High-Pressure Elastic, Vibrational and Structural Study of Monazite-Type GdPO4 from Ab Initio Simulations
Abstract
1. Introduction
2. Simulations Details
3. Results and Discussion
3.1. Structural Properties
3.2. Elastic Properties
3.3. Vibrational Properties
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ni, Y.X.; Hughes, J.M.; Mariano, A.N. Crystal-chemistry of the monazite and xenotime structures. Am. Mineral. 1995, 80, 21–26. [Google Scholar] [CrossRef]
- Morgan, P.E.D.; Marshall, D.B. Ceramic compounds of monazite and alumina. J. Am. Ceram. Soc. 1995, 78, 1553–1563. [Google Scholar] [CrossRef]
- Kolitsch, U.; Holtstam, D. Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields. Eur. J. Mineral. 2004, 16, 117–126. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Bettinelli, M.; Speghini, A.; Rhee, H.; Eichler, H.J.; Mariotto, G. Tetragonal YPO4—A novel SRS-active crystal. Laser Phys. Lett. 2008, 5, 367–374. [Google Scholar] [CrossRef]
- Clavier, N.; Podor, R.; Dacheux, N. Crystal chemistry of the monazite structure. J. Eur. Ceram. Soc. 2011, 31, 941–976. [Google Scholar] [CrossRef]
- Errandonea, D. High-pressure phase transitions and properties of MTO4 compounds with the monazite-type structure. Phys. Status Solidi B Basic Solid State Phys. 2017, 254, 1700016. [Google Scholar] [CrossRef]
- Rubatto, D.; Hermann, J.; Buick, I.S. Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anataxis (Mount Stafford, central Australia). J. Petrol. 2006, 47, 1973–1996. [Google Scholar] [CrossRef]
- Grove, M.; Harrison, T.M. Monazite Th-Pb age depth profiling. Geology 1999, 27, 487–490. [Google Scholar] [CrossRef]
- Meldrum, A.; Boatner, L.A.; Ewing, R.C. Displacive radiation effects in the monazite- and zircon-structure orthophosphates. Phys. Rev. B 1997, 56, 13805–13814. [Google Scholar] [CrossRef]
- Ewing, R.C. The design and evaluation of nuclear-waste forms: Clues from mineralogy. Can. Mineral. 2001, 39, 697–715. [Google Scholar] [CrossRef]
- Mullica, D.F.; Grossie, D.A.; Boatner, L.A. Coordination geometry and structural determinations of SmPO4, EuPO4 and GdPO4. Inorg. Chim. Acta F 1985, 109, 105–110. [Google Scholar] [CrossRef]
- Neumeier, S.; Arinicheva, Y.; Ji, Y.; Heuser, J.M.; Kowlaski, P.M.; Kegler, P.; Sclenz, H.; Bosbach, D.; Deissmann, G. New insights into phosphate based material for the immobilization of actinides. Radiochim. Acta 2017, 105, 961–984. [Google Scholar]
- Lessing, P.A.; Erickson, A.W. Synthesis and characterization of gadolinium phosphate neutron absorber. J. Eur. Ceram. Soc. 2003, 23, 3049–3057. [Google Scholar] [CrossRef]
- Lacomba-Perales, R.; Errandonea, D.; Meng, Y.; Bettinelli, M. High-pressure stability and compressibility of APO(4) (A = La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Phys. Rev. B 2010, 81, 064113. [Google Scholar] [CrossRef]
- Errandonea, D.; Gomis, O.; Santamaria-Perez, D.; Garcia-Domene, B.; Munoz, A.; Rodriguez-Hernandez, P.; Achary, S.N.; Tyagi, A.K.; Popescu, C. Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph. J. Appl. Phys. 2015, 117, 105902. [Google Scholar] [CrossRef]
- Achary, S.N.; Bevara, S.; Tyagi, A.K. Recent progress on synthesis and structural aspects of rare-earth phosphates. Coord. Chem. Rev. 2017, 340, 266–297. [Google Scholar] [CrossRef]
- Errandonea, D.; Gomis, O.; Rodriguez-Hernandez, P.; Munoz, A.; Ruiz-Fuertes, J.; Gupta, M.; Achary, S.N.; Hirsch, A.; Manjon, F.J.; Peters, L.; et al. High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4. J. Phys. Condens. Matter. 2018, 30, 065401. [Google Scholar] [CrossRef] [PubMed]
- Heffernan Karina, M.; Ross, N.L.; Spencer, E.C.; Boatner, L.A. The structural response of gadolinium phosphate to pressure. J. Solid State Chem. 2016, 241, 180–186. [Google Scholar] [CrossRef]
- Wilkinson, T.M.; Wu, D.; Musselman, M.A.; Li, N.; Mara, N.; Packard, C.E. Mechanical behavior of rare-earth orthophosphates near the monazite/xenotime boundary characterized by nanoindentation. Mater. Sci. Eng. A 2017, 691, 203–210. [Google Scholar] [CrossRef]
- Feng, J.; Xiao, B.; Zhou, R.; Pan, W. Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Mater. 2013, 61, 7364–7383. [Google Scholar] [CrossRef]
- Rustad, J.R. Density functional calculation of enthalpies of formation of rare-earth orthophosphates. Am. Mineral. 2012, 97, 791–799. [Google Scholar] [CrossRef]
- Li, Y.; Kowalski, P.M.; Blanca-Romero, A.; Vinograd, V.; Bosbach, D. Ab initio calculation of excess properties of La1−x (Ln, An)xPO4 solid solutions. J. Sol. State Chem. 2014, 220, 137–141. [Google Scholar] [CrossRef]
- Kowalski, P.M.; Beridze, G.; Vinograd, V.L.; Bosbach, D. Heat capacities of lantanides and actinide monazite-type ceramics. J. Nucl. Mater. 2015, 464, 147–154. [Google Scholar] [CrossRef]
- Kowalski, P.M.; Li, Y. Relationship between the thermodynamic excess properties of mixing and the elastic moduli in the monazite-type ceramics. J. Eur. Ceram. Soc. 2016, 36, 2093–2096. [Google Scholar] [CrossRef]
- Gomis, O.; Lavina, B.; Rodriguez-Hernandez, P.; Munoz, A.; Errandonea, R.; Errandonea, D.; Bettinelli, M. High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4. J. Phys. Condens. Matter. 2017, 29, 095401. [Google Scholar] [CrossRef] [PubMed]
- Errandonea, D.; Pellicer-Porres, J.; Martinez-Garcia, D.; Ruiz-Fuertes, J.; Friedrich, A.; Morgenroth, W.; Popescu, C.; Rodriguez-Hernandez, P.; Munoz, A.; Bettinelli, M. Phase Stability of Lanthanum Orthovanadate at High Pressure. J. Phys. Chem. C 2016, 120, 13749–13762. [Google Scholar] [CrossRef]
- Errandonea, D.; Munoz, A.; Rodriguez-Hernandez, P.; Gomis, O.; Achary, S.N.; Popescu, C.; Patwe, S.J.; Tyagi, A.K. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4. Inorg. Chem. 2016, 55, 4958–4969. [Google Scholar] [CrossRef] [PubMed]
- Errandonea, D.; Garg, A.B. Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates. Prog. Mater. Sci. 2018, 97, 123–169. [Google Scholar] [CrossRef]
- Achary, S.N.; Errandonea, D.; Munoz, A.; Rodriguez-Hernandez, P.; Manjon, F.J.; Krishna, P.S.R.; Patwe, S.J.; Grover, V.; Tyagi, A.K. Experimental and theoretical investigations on the polymorphism and metastability of BiPO4. Dalton Trans. 2013, 42, 14999–15015. [Google Scholar] [CrossRef] [PubMed]
- Errandonea, D.; Munoz, A.; Rodriguez-Hernandez, P.; Proctor, J.E.; Sapina, F.; Bettinelli, M. Theoretical and experimental study of the crystal structures, lattice vibrations, and band structures of monazite-type PbCrO4, PbSeO4, SrCrO4, and SrSeO4. Inorg. Chem. 2015, 54, 7524–7535. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar]
- Kresse, G.; Hafner, J. Ab-Initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Gleissner, J.; Errandonea, D.; Segura, A.; Pellicer-Porres, J.; Hakeem, M.A.; Proctor, J.E.; Raju, S.V.; Kumar, R.S.; Rodriguez-Hernandez, P.; Munoz, A.; et al. Monazite-type SrCrO4 under compression. Phys. Rev. B 2016, 94, 134108. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin Lucian, A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Mujica, A.; Rubio, A.; Munoz, A.; Needs, R.J. High-pressure phases of group-IV, III-V, and II-VI compounds. Rev. Mod. Phys. 2013, 75, 863–912. [Google Scholar] [CrossRef]
- Nielsen, O.H.; Martin, R.M. Quantum-mechanical theory of stress and force. Phys. Rev. B 1985, 32, 3780–3791. [Google Scholar] [CrossRef]
- Chetty, N.; Munoz, A.; Martin, R.M. 1st-principles calculation of the elastic-constants of AlAs. Phys. Rev. B 1989, 40, 11934–11936. [Google Scholar] [CrossRef]
- Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 2002, 65, 104104. [Google Scholar] [CrossRef]
- Parlinski, K. Computer Code Phonon. Available online: http://www.computingformaterials.com/ (accessed on 14 July 2014).
- Blanca-Romero, A.; Kowalski, P.M.; Beridze, G.; Schlenz, H.; Bosbach, D. Performance of DFT plus U Method for Prediction of Structural and Thermodynamic Parameters of Monazite-Type Ceramics. J. Comput. Chem. 2014, 35, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Du, A.; Wan, C.; Qu, Z.; Pan, W. Thermal Conductivity of Monazite-Type REPO4 (RE = La, Ce, Nd, Sm, Eu, Gd). J. Am. Ceram. Soc. 2009, 92, 2687–2692. [Google Scholar] [CrossRef]
- Li, H.; Zhang, S.; Zhou, S.; Cao, X. Bonding Characteristics, Thermal Expansibility, and Compressibility of RXO4 (R = Rare Earths, X = P, As) within Monazite and Zircon Structures. Inorg. Chem. 2009, 48, 4542–4548. [Google Scholar] [CrossRef] [PubMed]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Nye, J.F. Physical Properties of Crystals. Their Representation by Tensor and Matrices; Oxford University Press: Oxford, UK, 1957. [Google Scholar]
- Wallace, D.C. Thermodynamics of Crystals; Dover Publications: New York, NY, USA, 1998. [Google Scholar]
- Grimvall, G.; Magyari-Koepe, B.; Ozolins, V.; Persson, K.A. Lattice instabilities in metallic elements. Rev. Mod. Phys. 2012, 84, 945–986. [Google Scholar] [CrossRef]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Clarendon Press: London, UK, 1954. [Google Scholar]
- Wallace, D.C. Thermoelasticity of stressed materials and comparison of various elastic constants. Phys. Rev. 1967, 162, 776–789. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik); B.G. Teubner: Leipzig/Berlin, Germany, 1928. [Google Scholar]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. 1952, 65, 349–355. [Google Scholar] [CrossRef]
- Zhao, X.S.; Shang, S.L.; Liu, Z.K.; Shen, J.Y. Elastic properties of cubic, tetragonal and monoclinic ZrO2 from first-principles calculations. J. Nucl. Mater. 2011, 415, 13–17. [Google Scholar] [CrossRef]
- Caracas, R.; Ballaran, T.B. Elasticity of (K, Na)AlSi3O8 hollandite from lattice dynamic calculations. Phys. Earth Planet. Inter. 2010, 181, 21–26. [Google Scholar] [CrossRef]
- Brazhkin, V.V.; Lyapin, A.G.; Hemley, R.J. Harder than diamond: Dreams and reality. Philos. Mag. A 2002, 82, 231–253. [Google Scholar] [CrossRef]
- Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 2011, 10, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Pugh, S.F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Silva, E.N.; Ayala, A.P.; Guedes, I.; Paschoal, C.W.A.; Moreira, R.L.; Loong, C.K.; Boatner, L.A. Vibrational spectra of monazite-type rare-earth orthophosphates. Opt. Mater. 2006, 29, 224–230. [Google Scholar] [CrossRef]
- Begun, G.M.; Beall, G.W.; Boatner, L.A.; Gregor, W.J. Raman-spectra of the rare-earth ortho-phosphates. J. RAMAN Spectrosc. 1981, 11, 273–278. [Google Scholar] [CrossRef]
- Ruschel, K.; Nasdala, L.; Kronz, A.; Hanchar, J.M.; Toebbens, D.M.; Skoda, R.; Finger, F.; Moeller, A. A Raman spectroscopic study on the structural disorder of monazite-(Ce). Mineral. Petrol. 2012, 105, 41–55. [Google Scholar] [CrossRef]
- Huang, T.; Lee, J.S.; Kung, J.; Lin, C.M. Study of monazite under high pressure. Solid State Commun. 2010, 150, 1845–1850. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Zuo, J.A.; Ding, Z.J. Pressure effect on optical properties and structure stability of LaPO4:Eu3+ Microspheres. J. Nanosci. Nanotechnol. 2010, 10, 7791–7794. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zuo, J.A.; Ding, Z.J. Pressure effect on optical properties and structure stability of LaPO4:Eu3+ hollow spheres. J. Rare Earths 2010, 28, 254–257. [Google Scholar] [CrossRef]
- Grüneisen, E. Concerning the thermic expansion of metals. Ann. Phys. 1910, 33, 33–64. [Google Scholar] [CrossRef]
- Ruiz-Fuertes, J.; Errandonea, D.; Lopez-Moreno, S.; Gonzalez, J.; Gomis, O.; Vilaplana, R.; Manjon, F.J.; Munoz, A.; Rodriguez-Hernandez, P.; Friedrich, A.; et al. High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds. Phys. Rev. B 2011, 83, 214112. [Google Scholar] [CrossRef]
This Study | Experiments | Theory | |
---|---|---|---|
a (Å) | 6.6276 | 6.623 a 6.6516(3) b 6.62(2) c | 6.4152 d 6.713 e |
b (Å) | 6.8145 | 6.829 a 6.84840(7) b 6.823(2) c | 6.6103 d 6.887 e |
c (Å) | 6.2930 | 6.335 a 6.33571(12) b 6.319(2) c | 6.0953 d 6.358 e |
β (°) | 104.18° | 103.80 a 104.023(2) b 104.16(2) c | 104.6 d 104.2 e |
Atom | Site | x | y | z |
---|---|---|---|---|
Gd | 4e | 0.28394 | 0.14513 | 0.08817 |
P | 4e | 0.29933 | 0.16215 | 0.61291 |
O1 | 4e | 0.2510 | 0.0000 | 0.4330 |
O2 | 4e | 0.3850 | 0.3381 | 0.5017 |
O3 | 4e | 0.4735 | 0.1010 | 0.8184 |
O4 | 4e | 0.1182 | 0.2100 | 0.7148 |
This Work | Experiments | Theory | |
---|---|---|---|
V (Å3) | 275.55 | 279.1 a 280.008(4) b 276.4(4) c | 250.20 e 284.96 f |
B0 (GPa) | 138.3 | 160 a 128.1(8) b 137 d | 149 g 121.0 h |
B′0 | 4.07 | 5.8(2) b |
C11 | C22 | C33 | C44 | C55 | C66 | C12 | C13 | C15 | C23 | C25 | C25 | C46 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
262.19 | 251.61 | 205.01 | 65.19 | 60.32 | 58.16 | 71.41 | 90.99 | 5.28 | 88.50 | −18.17 | −18.17 | −13.70 |
BH (GPa) | EH (GPa) | GH (GPa) | BH/GH | ν |
---|---|---|---|---|
134.47 a | 169.62 a | 65.575 a | 2.05 a | 0.289 a |
137 b | 172 b | 67 b | 2.045 b | 0.290 b |
121.0 c | 165.2 c | 64.9 c | 1.86 c |
Mode | (cm−1) | (cm−1/GPa) | (cm−1/GPa2) | γ |
---|---|---|---|---|
Bg | 84.78 | 0.762 | 0.0180 | 1.24 |
Ag | 86.33 | 0.807 | 0.0128 | 1.29 |
Ag | 108.61 | 0.846 | 0.0216 | 1.07 |
Ag | 124.99 | 0.765 | 0.008 | 0.84 |
Bg | 129.32 | 0.830 | 0.016 | 0.88 |
Bg | 137.84 | 0.852 | 0.002 | 0.85 |
Bg | 153.93 | 0.059 | 0.027 | 0.05 |
Ag | 178.30 | 1.354 | 0.029 | 1.05 |
Bg | 180.54 | 2.610 | 0.007 | 1.99 |
Ag | 190.93 | 1.648 | 0.016 | 1.19 |
Ag | 189.67 | 3.477 | 0.0343 | 2.53 |
Bg | 235.29 | 3.887 | 0.057 | 2.28 |
Ag | 240.14 | 3.014 | 0.0233 | 1.736 |
Bg | 246.86 | 3.411 | 0.012 | 1.911 |
Ag | 264.93 | 5.089 | 0.069 | 2.656 |
Bg | 276.56 | 3.176 | 0.011 | 1.588 |
Bg | 295.93 | 3.982 | 0.044 | 1.861 |
Ag | 310.90 | 2.209 | 0.000 | 0.982 |
Bg | 381.29 | 2.722 | 0.001 | 0.987 |
Ag | 404.71 | 2.524 | 0.007 | 0.862 |
Ag | 455.84 | 2.592 | 0.018 | 0.786 |
Bg | 499.31 | 2.653 | 0.035 | 0.734 |
Ag | 506.02 | 0.589 | 0.010 | 0.161 |
Bg | 533.07 | 1.190 | 0.017 | 0.308 |
Ag | 542.17 | 1.677 | 0.003 | 0.427 |
Bg | 563.55 | 1.750 | 0.004 | 0.429 |
Ag | 600.11 | 1.482 | 0.007 | 0.341 |
Bg | 603.45 | 1.624 | 0.007 | 0.372 |
Bg | 942.72 | 4.215 | 0.028 | 0.618 |
Ag | 954.05 | 4.277 | 0.036 | 0.620 |
A | 984.01 | 4.300 | 0.013 | 0.604 |
Ag | 1007.23 | 5.005 | 0.039 | 0.687 |
Bg | 1020.45 | 3.972 | 0.016 | 0.538 |
A | 1051.30 | 4.269 | 0.014 | 0.561 |
Bg | 1055.21 | 4.837 | 0.050 | 0.633 |
Bg | 1072.33 | 4.480 | 0.008 | 0.577 |
Mode | (cm−1) | (cm−1/GPa) | (cm−1/GPa2) | γ |
---|---|---|---|---|
Au | 91.05 | 0.219 | 0.007 | 0.332 |
Bu | 102.50 | 1.442 | 0.005 | 1.946 |
Au | 116.32 | 1.541 | 0.0125 | 1.832 |
Bu | 168.18 | 0.722 | 0.013 | 0.594 |
Au | 170.55 | 0.866 | 0.010 | 0.702 |
Bu | 187.21 | 1.270 | 0.032 | 0.938 |
Au | 189.765 | 2.761 | 0.041 | 2.012 |
Bu | 205.99 | 2.328 | 0.021 | 1.563 |
Au | 219.28 | 1.386 | 0.006 | 0.874 |
Bu | 225.70 | 3.603 | 0.026 | 2.207 |
Au | 245.96 | 3.397 | 0.032 | 1.910 |
Bu | 254.49 | 3.153 | 0.013 | 1.713 |
Au | 274.99 | 3.789 | 0.0231 | 1.905 |
Au | 304.38 | 4.034 | 0.039 | 1.832 |
Bu | 309.61 | 1.867 | 0.006 | 0.834 |
Bu | 375.28 | 3.061 | 0.033 | 1.128 |
Au | 388.32 | 2.186 | 0.0011 | 0.778 |
Au | 466.32 | 1.013 | 0.0122 | 0.300 |
Bu | 484.23 | 1.851 | 0.003 | 0.528 |
Au | 507.73 | 1.501 | 0.0044 | 0.408 |
Bu | 526.89 | 2.3165 | 0.0124 | 0.608 |
Au | 533.09 | 1.864 | 0.0033 | 0.483 |
Bu | 550.13 | 1.428 | 0.007 | 0.359 |
Bu | 590.07 | 1.384 | 0.006 | 0.324 |
Au | 613.26 | 1.765 | 0.008 | 0.398 |
Au | 935.32 | 4.083 | 0.023 | 0.603 |
Bu | 936.86 | 4.205 | 0.029 | 0.620 |
Au | 974.23 | 3.643 | 0.017 | 0.517 |
Bu | 986.50 | 3.483 | 0.014 | 0.488 |
Bu | 1004.66 | 4.674 | 0.030 | 0.643 |
Au | 1014.56 | 5.209 | 0.038 | 0.710 |
Bu | 1066.28 | 4.956 | 0.024 | 0.642 |
Au | 1082.61 | 4.763 | 0.024 | 0.608 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, A.; Rodríguez-Hernández, P. High-Pressure Elastic, Vibrational and Structural Study of Monazite-Type GdPO4 from Ab Initio Simulations. Crystals 2018, 8, 209. https://doi.org/10.3390/cryst8050209
Muñoz A, Rodríguez-Hernández P. High-Pressure Elastic, Vibrational and Structural Study of Monazite-Type GdPO4 from Ab Initio Simulations. Crystals. 2018; 8(5):209. https://doi.org/10.3390/cryst8050209
Chicago/Turabian StyleMuñoz, Alfonso, and Placida Rodríguez-Hernández. 2018. "High-Pressure Elastic, Vibrational and Structural Study of Monazite-Type GdPO4 from Ab Initio Simulations" Crystals 8, no. 5: 209. https://doi.org/10.3390/cryst8050209
APA StyleMuñoz, A., & Rodríguez-Hernández, P. (2018). High-Pressure Elastic, Vibrational and Structural Study of Monazite-Type GdPO4 from Ab Initio Simulations. Crystals, 8(5), 209. https://doi.org/10.3390/cryst8050209