P-T Phase Diagram of LuFe2O4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Synchrotron XRD
2.3. Resistivity Measurements
2.4. Neutron Powder Diffraction
2.5. Infrared Spectroscopy
2.6. Ab-Initio Calculations
2.7. X-Ray Absorption Spectroscopy
3. Results
3.1. Synchrotron XRD
3.1.1. 373 K
3.1.2. 298 K
Patm ≤ P ≤ 6.6 GPa
6.6 GPa ≤ P ≤ 19.1 GPa
3.1.3. 50 K
3.2. Neutron Powder Diffraction
3.3. Resistivity Measurements
3.4. Infrared Spectroscopy
3.5. X-Ray Absorption Spectroscopy
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cheong, S.W.; Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nat. Mat. 2007, 6, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, N.; Ohsumi, H.; Ohwada, K.; Ishii, K.; Inami, T.; Kakurai, K.; Murakami, Y.; Yoshii, K.; Mori, S.; Horibe, Y.; et al. Ferroelectricity from iron valence ordering in the charge-frustrated system Lufe2o4. Nature 2005, 436, 1136–1138. [Google Scholar] [CrossRef] [PubMed]
- Mundy, J.A.; Brooks, C.M.; Holtz, M.E.; Moyer, J.A.; Das, H.; Rebola, A.F.; Heron, J.T.; Clarkson, J.D.; Disseler, S.M.; Liu, Z.Q.; et al. Atomically engineered ferroic layers yield a room—Temperature magnetoelectric multiferroic. Nature 2016, 537, 523. [Google Scholar] [CrossRef] [PubMed]
- Niermann, D.; Waschkowski, F.; de Groot, J.; Angst, M.; Hemberger, J. Dielectric properties of charge-ordered lufe2o4 revisited: The Apparent influence of contacts. Phys. Rev. Lett. 2012, 109, 016405. [Google Scholar] [CrossRef] [PubMed]
- Lafuerza, S.; García, J.; Subías, G.; Blasco, J.; Conder, K.; Pomjakushina, E. Intrinsic electrical properties of Lufe2o4. Phys.Rev. B 2013, 88, 085130. [Google Scholar] [CrossRef]
- Isobe, M.; Kimizuka, N.; Iida, J.; Takekawa, S. Structures of Lufecoo4 and Lufe2o4. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1990, 46, 1917–1918. [Google Scholar] [CrossRef]
- Bourgeois, J.; Hervieu, M.; Poienar, M.; Abakumov, A.M.; Elkaim, E.; Sougrati, M.T.; Porcher, F.; Damay, F.; Rouquette, J.; Van Tendeloo, G.; et al. Evidence of oxygen-dependent modulation in Lufe2o4. Phys. Rev. B 2012, 85, 064102. [Google Scholar] [CrossRef]
- Hervieu, M.; Guesdon, A.; Bourgeois, J.; Elkaim, E.; Poienar, M.; Damay, F.; Rouquette, J.; Maignan, A.; Martin, C. Oxygen storage capacity and structural flexibility of LuFe2O4+x (0 ≤ x ≤ 0.5). Nat. Mater. 2014, 13, 74–80. [Google Scholar] [PubMed]
- Bourgeois, J.; André, G.; Petit, S.; Robert, J.; Poienar, M.; Rouquette, J.; Elkaïm, E.; Hervieu, M.; Maignan, A.; Martin, C.; Damay, F. Evidence of magnetic phase separation in Lufe2o4. Phys. Rev. B 2012, 86, 024413. [Google Scholar] [CrossRef]
- Iida, J.; Tanaka, M.; Nakagawa, Y.; Funahashi, S.; Kimizuka, N.; Takekawa, S. Magnetization and spin correlation of 2-dimensional triangular antiferromagnet Lufe2o4. J. Phys. Soc. Jpn. 1993, 62, 1723–1735. [Google Scholar] [CrossRef]
- Christianson, A.D.; Lumsden, M.D.; Angst, M.; Yamani, Z.; Tian, W.; Jin, R.; Payzant, E.A.; Nagler, S.E.; Sales, B.C.; Mandrus, D. Three-dimensional Magnetic correlations in multiferroic Lufe(2)O(4). Phys. Rev. Lett. 2008, 100, 107601. [Google Scholar] [CrossRef] [PubMed]
- Angst, M.; Hermann, R.P.; Christianson, A.D.; Lumsden, M.D.; Lee, C.; Whangbo, M.H.; Kim, J.W.; Ryan, P.J.; Nagler, S.E.; Tian, W.; Jin, R.; Sales, B.C.; Mandrus, D. Charge order in Lufe2o4: Antiferroelectric ground state and coupling to magnetism. Phys. Rev. Lett. 2008, 101, 227601. [Google Scholar] [CrossRef] [PubMed]
- Lafuerza, S.; Garcia, J.; Subias, G.; Blasco, J.; Cuartero, V. Strong local lattice instability in hexagonal ferrites Rfe2o4 (R = Lu, Y, Yb) Revealed by X-ray absorption spectroscopy. Phys. Rev. B 2014, 89, 045129. [Google Scholar] [CrossRef]
- Roth, W.L. Magnetic structures of Mno, Feo, Coo, and Nio. Phys. Rev. 1958, 110, 1333–1341. [Google Scholar] [CrossRef]
- Piermarini, G.J.; Block, S.; Barnett, J.D.; Forman, R.A. Calibration of pressure-dependence of R1 ruby fluorescence line to 195 Kbar. J. Appl. Phys. 1975, 46, 2774–2780. [Google Scholar] [CrossRef]
- Hammersley, A.P.; Svensson, S.O.; Hanfland, M.; Fitch, A.N.; Hausermann, D. Two-dimensional detector software: From Real detector to idealised image or two-theta scan. High Press. Res. 1996, 14, 235–248. [Google Scholar] [CrossRef]
- Rodriguezcarvajal, J. Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Garbarino, G.; Weht, R.; Sow, A.; Sulpice, A.; Toulemonde, P.; Alvarez-Murga, M.; Strobel, P.; Bouvier, P.; Mezouar, M.; Nunez-Regueiro, M. Direct observation of the influence of the as-Fe-as angle on the T-C of superconducting Smfeaso1-Xfx. Phys. Rev. B 2011, 84, 024510. [Google Scholar] [CrossRef]
- Sanfilippo, S.; Elsinger, H.; Nunez-Regueiro, M.; Laborde, O.; Le Floch, S.; Affronte, M.; Olcese, G.L.; Palenzona, A. Superconducting high pressure Casi2 phase with T-C up to 14 K. Phys. Rev. B 2000, 61, R3800–R3803. [Google Scholar] [CrossRef]
- Hansen, T.C.; Henry, P.F.; Fischer, H.E.; Torregrossa, J.; Convert, P. The D20 instrument at the ILL: A versatile high-intensity two-axis neutron diffractometer. Meas. Sci. Technol. 2008, 19, 034001. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Abinitio molecular-dynamics for liquid-metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Damay, F.; Poienar, M.; Hervieu, M.; Guesdon, A.; Bourgeois, J.; Hansen, T.; Elkaim, E.; Haines, J.; Hermet, P.; Konczewicz, L.; et al. High-pressure polymorph of Lufe2o4 with room-temperature antiferromagnetic order. Phys. Rev. B 2015, 91, 214111. [Google Scholar] [CrossRef]
- Joly, Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Phys. Rev. B 2001, 63, 125120. [Google Scholar] [CrossRef]
- Rouquette, J.; Haines, J.; Al-Zein, A.; Papet, P.; Damay, F.; Bourgeois, J.; Hammouda, T.; Doré, F.; Maignan, A.; Hervieu, M.; Martin, C. Pressure-induced structural transition in Lufe2o4: Towards a new charge ordered state. Phys. Rev. Lett. 2010, 105, 237203. [Google Scholar] [CrossRef] [PubMed]
- Blasco, J.; Lafuerza, S.; Garcia, J.; Subias, G. Structural properties in Rfe2o4 compounds (R = Tm, Yb, and Lu). Phys. Rev. B 2014, 90, 094119. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.; Cheong, S.W.; Choi, E.J. Infrared optical response of Lufe2o4 under dc electric field. Phys. Rev. B 2012, 85, 014303. [Google Scholar] [CrossRef]
- Vitucci, F.M.; Nucara, A.; Mirri, C.; Nicoletti, D.; Ortolani, M.; Schade, U.; Calvani, P. Infrared and transport properties of Lufe2o4 under electric fields. Phys. Rev. B 2011, 84, 153105. [Google Scholar] [CrossRef]
- Vitucci, F.M.; Nucara, A.; Nicoletti, D.; Sun, Y.; Li, C.H.; Soret, J.C.; Schade, U.; Calvani, P. Infrared study of the charge-ordered multiferroic Lufe2o4. Phys. Rev. B 2010, 81, 195121. [Google Scholar] [CrossRef]
- Xu, X.S.; de Groot, J.; Sun, Q.C.; Sales, B.C.; Mandrus, D.; Angst, M.; Litvinchuk, A.P.; Musfeldt, J.L. Lattice dynamical probe of charge order and antipolar bilayer stacking in Lufe2o4. Phys.Rev. B 2010, 82, 014304. [Google Scholar] [CrossRef]
- Harris, A.B.; Yildirim, T. Charge and spin ordering in the mixed-valence compound Lufe2o4. Phys. Rev. B 2010, 81, 134417. [Google Scholar] [CrossRef]
C2/m (n° 12) am = 5.9415 (4) Å bm = 3.4181 (2) Å cm = 8.6087 (5) Å βm = 103.505 (5)° V = 170.002 (2) Å3 | RBragg = 13.9 % χ2= 4.75 | ||||
Atom | Wyckoff Site | x | y | z | Isotropic B Factors |
Lu | (2a) | 0 | 0 | 0 | 2.266 |
Fe | (4i) | 0.218 (2) | 0 | 0.6443(5) | 1.100 |
O1 | (4i) | 0.300 (2) | 0 | 0.8760(7) | 1.658 |
O2 | (4i) | 0.129 (3) | 0 | 0.3815 (6) | 2.750 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poienar, M.; Bourgeois, J.; Martin, C.; Hervieu, M.; Damay, F.; Garbarino, G.; Hanfland, M.; Hansen, T.; Baudelet, F.; Bantignies, J.L.; Hermet, P.; Haines, J.; Rouquette, J. P-T Phase Diagram of LuFe2O4. Crystals 2018, 8, 184. https://doi.org/10.3390/cryst8050184
Poienar M, Bourgeois J, Martin C, Hervieu M, Damay F, Garbarino G, Hanfland M, Hansen T, Baudelet F, Bantignies JL, Hermet P, Haines J, Rouquette J. P-T Phase Diagram of LuFe2O4. Crystals. 2018; 8(5):184. https://doi.org/10.3390/cryst8050184
Chicago/Turabian StylePoienar, Maria, Julie Bourgeois, Christine Martin, Maryvonne Hervieu, Françoise Damay, Gaston Garbarino, Michael Hanfland, Thomas Hansen, François Baudelet, Jean Louis Bantignies, Patrick Hermet, Julien Haines, and Jérôme Rouquette. 2018. "P-T Phase Diagram of LuFe2O4" Crystals 8, no. 5: 184. https://doi.org/10.3390/cryst8050184