Crystal Structure of the Protonated Germanide Cluster [HGe9]3−
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A.
Appendix A.1. Experimental Details
Appendix A.1.1. Synthesis of [Rb([2.2.2]crypt)]2[Rb([18]crown−6)][HGe9]·4NH3
Appendix A.1.2. X-ray Diffraction Studies
References
- Joannis, M. Action du sodammonium et du potassammonium sur quelques méteaux. Hebd. Seances Acad. Sci. 1891, 113, 795–798. [Google Scholar]
- Zintl, E.; Goubeau, J.; Dullenkopf, W. Salzartige Verbindungen und Intermetallische Phasen Des Natriums in Flüssigem Ammoniak. Z. Phys. Chem. 1931, 154, 1–46. [Google Scholar] [CrossRef]
- Zintl, E.; Harder, A. Polyplumbide, Polystannide und ihr Übergang in Metallphasen. Z. Phys. Chem. 1931, 154A, 47–91. [Google Scholar] [CrossRef]
- Corbett, J.D. Polyatomic Zintl anions of the post-transition elements. Chem. Rev. 1985, 85, 383–397. [Google Scholar] [CrossRef]
- Scharfe, S.; Kraus, F.; Stegmaier, S.; Schier, A.; Fässler, T.F. Zintl ions, cage compounds, and intermetalloid clusters of group 14 and group 15 elements. Angew. Chem. Int. Ed. 2011, 50, 3630–3670. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, C.; Gärtner, S.; Korber, N. Si44− in Solution—First Solvate Crystal Structure of the Ligand-free Tetrasilicide Tetraanion in Rb1.2K2.8Si4·7NH3. Zeitschrift für Anorganische und Allgemeine Chemie 2017, 643, 141–145. [Google Scholar] [CrossRef]
- Lorenz, C.; Gärtner, S.; Korber, N. Ammoniates of Zintl Phases: Similarities and Differences of Binary Phases A4E4 and Their Corresponding Solvates. Crystals 2018, 8, 276. [Google Scholar] [CrossRef]
- Wiesler, K.; Brandl, K.; Fleischmann, A.; Korber, N. Tetrahedral [Tt4]4− Zintl Anions Through Solution Chemistry: Syntheses and Crystal Structures of the Ammoniates Rb4Sn4·2NH3, Cs4Sn4·2NH3, and Rb4Pb4·2NH3. Zeitschrift für Anorganische und Allgemeine Chemie 2009, 635, 508–512. [Google Scholar] [CrossRef]
- Benda, C.B.; Henneberger, T.; Klein, W.; Fässler, T.F. [Si4]4– and [Si9]4– Clusters Crystallized from Liquid Ammonia Solution–Synthesis and Characterization of K8[Si4][Si9]·(NH3)14.6. Zeitschrift für Anorganische und Allgemeine Chemie 2017, 643, 146–148. [Google Scholar] [CrossRef]
- Edwards, P.A.; Corbett, J.D. Stable homopolyatomic anions. Synthesis and crystal structures of salts containing the pentaplumbide (2-) and pentastannide (2-) anions. Inorg. Chem. 1977, 16, 903–907. [Google Scholar] [CrossRef]
- Goicoechea, J.M.; Sevov, S.C. Naked Deltahedral Silicon Clusters in Solution: Synthesis and Characterization of Si93− and Si52−. J. Am. Chem. Soc. 2004, 126, 6860–6861. [Google Scholar] [CrossRef] [PubMed]
- Suchentrunk, C.; Korber, N. Ge52− Zintl anions: Synthesis and crystal structures of [K([2.2.2]-crypt)]2Ge5·4NH3 and [Rb([2.2.2]-crypt)]2Ge5·4NH3. New J. Chem. 2006, 30, 1737–1739. [Google Scholar] [CrossRef]
- Joseph, S.; Suchentrunk, C.; Korber, N. Dissolving Silicides: Syntheses and Crystal Structures of New Ammoniates Containing Si52− and Si94− Polyanions and the Role of Ammonia of Crystallisation. Z. Naturforsch. 2010, B65, 1059–1065. [Google Scholar] [CrossRef]
- Henneberger, T.; Klein, W.; Fässler, T.F. Silicon Containing Nine Atom Clusters from Liquid Ammonia Solution: Crystal Structures of the First Protonated Clusters [HSi9]3− and [H2{Si/Ge}9]2−. Z. Anorg. Allg. Chem. 2018, 644, 1018–1027. [Google Scholar] [CrossRef]
- Lorenz, C.; Hastreiter, F.; Hioe, J.; Nanjundappa, L.; Gärtner, S.; Korber, N.; Gschwind, R.M. Structure of [HSi9]3− in the Solid State and its Unexpectedly High Dynamics in Solution. Angew. Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Suchentrunk, C.; Daniels, J.; Somer, M.; Carrillo-Cabrera, W.; Korber, N. Synthesis and Crystal Structures Of The Polygermanide Ammoniates K4Ge9·9NH3, Rb4Ge9·5NH3 and Cs6Ge18·4NH3. Z. Naturforsch. 2005, B60, 277–283. [Google Scholar] [CrossRef]
- Gärtner, S.; Suchentrunk, C.; Korber, N. Coordination preferences of the alkali cations sodium and caesium in the mixed-cationic Zintl ammoniate Cs3.2Na0.8Ge9·5.3NH3. Acta Crystallogr. C 2014, 70, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
- Suchentrunk, C.; Korber, N. Synthesis and crystal structures of [K (18-crown−6)][Rb (18-crown−6)]2Ge9·6NH3, [Rb (18-crown−6)]3Ge9·9NH3 and [Cs (18-crown−6)]3Ge9·6NH3. Inorg. Chim. Acta 2006, 359, 267–272. [Google Scholar] [CrossRef]
- Bentlohner, M.M.; Fischer, C.; Fässler, T.F. Synthesis and characterization of pristine closo-[Ge10]2−. Chem. Commun. 2016, 52, 9841–9843. [Google Scholar] [CrossRef] [PubMed]
- Spiekermann, A.; Hoffinann, S.D.; Fässler, T.F. The Zintl ion [Pb10]2−: A rare example of a homoatomic closo cluster. Angew. Chem. Int. Ed. 2006, 45, 3459–3462. [Google Scholar] [CrossRef] [PubMed]
- Ponou, S.; Fässler, T.F. Crystal Growth and Structure Refinement of K4Ge9. Zeitschrift für Anorganische und Allgemeine Chemie 2007, 633, 393–397. [Google Scholar] [CrossRef]
- Queneau, V.; Sevov, S.C. Ge94−: A deltahedral zintl ion now made in the solid-state. Angew. Chem. Int. Ed. 1997, 36, 1754–1756. [Google Scholar] [CrossRef]
- Hoch, C.; Wendorff, M.; Röhr, C. Synthesis and crystal structure of the tetrelides A12M17 (A = Na, K, Rb, Cs; M = Si, Ge, Sn) and A4Pb9 (A = K, Rb). J. Alloys Compd. 2003, 361, 206–221. [Google Scholar] [CrossRef]
- Von Schnering, H.G.; Baitinger, M.; Bolle, U.; CarrilloCabrera, W.; Curda, J.; Grin, Y.; Heinemann, F.; Llanos, J.; Peters, K.; Schmeding, A.; et al. Binary alkali metal compounds with the zintl anions Ge94− and Sn94−. Z. Anorg. Allg. Chem. 1997, 623, 1037–1039. [Google Scholar] [CrossRef]
- Scharfe, S.; Fässler, T.F. Polyhedral nine-atom clusters of tetrel elements and intermetalloid derivatives. Philos. Trans. R. Soc. A 2010, 368, 1265–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fässler, T.F. The renaissance of homoatomic nine-atom polyhedra of the heavier carbon-group elements Si-Pb. Coord. Chem. Rev. 2001, 215, 347–377. [Google Scholar] [CrossRef]
- Esenturk, E.N.; Fettinger, J.; Eichhorn, B. Synthesis and characterization of the [Ni6Ge13·(CO)5]4− and [Ge9Ni2(PPh3)]2− Zintl ion clusters. Polyhedron 2006, 25, 521–529. [Google Scholar] [CrossRef]
- Geitner, F.S.; Klein, W.; Fässler, T.F. Synthesis and Reactivity of Multiple PR2-Functionalized Nonagermanide Clusters. Angew. Chem. Int. Ed. 2018. [Google Scholar] [CrossRef]
- Frischhut, S.; Klein, W.; Drees, M.; Fässler, T.F. Acylation of homoatomic Ge9 Cages and Subsequent Decarbonylation. Chem. Eur. J. 2018, 24, 9009–9014. [Google Scholar] [CrossRef] [PubMed]
- Sevov, S.C.; Goicoechea, J.M. Chemistry of deltahedral Zintl ions. Organometallics 2006, 25, 5678–5692. [Google Scholar] [CrossRef]
- Goicoechea, J.M.; Sevov, S.C. Organozinc Derivatives of Deltahedral Zintl Ions: Synthesis and Characterization of closo-[E9Zn(C6H5)]3− (E = Si, Ge, Sn, Pb). Organometallics 2006, 25, 4530–4536. [Google Scholar] [CrossRef]
- Kocak, F.S.; Downing, D.O.; Zavalij, P.; Lam, Y.F.; Vedernikov, A.N.; Eichhorn, B. Surprising Acid/Base and Ion-Sequestration Chemistry of Sn94−: HSn93−, Ni@HSn93−, and the Sn93− Ion Revisited. J. Am. Chem. Soc. 2012, 134, 9733–9740. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Sevov, S.C. Oxidative coupling of deltahedral [Ge9]4− Zintl ions. J. Am. Chem. Soc. 1999, 121, 9245–9246. [Google Scholar] [CrossRef]
- Hauptmann, R.; Fässler, T.F. Low Dimensional Arrangements of the Zintl Ion [Ge9-Ge9]6− and Chemical Bonding in [Ge6]2−,[Ge9-Ge9]6−, and {[Ge9]}2−. Zeitschrift für Anorganische und Allgemeine Chemie 2003, 629, 2266–2273. [Google Scholar] [CrossRef]
- Ugrinov, A.; Sevov, S.C. [Ge9Ge9Ge9]6−: A Linear Trimer of 27 Germanium Atoms. J. Am. Chem. Soc. 2002, 124, 10990–10991. [Google Scholar] [CrossRef] [PubMed]
- Yong, L.; Hoffmann, S.D.; Fässler, T.F. The Controlled Oxidative Coupling of Ge94− Zintl Anions to a Linear Trimer [Ge9=Ge9=Ge9]6−. Zeitschrift für Anorganische und Allgemeine Chemie 2005, 631, 1149–1153. [Google Scholar] [CrossRef]
- Ugrinov, A.; Sevov, S.C. [Ge9Ge9Ge9Ge9]8−: A Linear Tetramer of Nine-Atom Germanium Clusters, a Nanorod. Inorg. Chem. 2003, 42, 5789–5791. [Google Scholar] [CrossRef] [PubMed]
- Yong, L.; Hoffmann, S.D.; Fässler, T.F. Oxidative Coupling of Ge94− Zintl Anions-Hexagonal Rod Packing of Linear [Ge9=Ge9=Ge9=Ge9]8−. Zeitschrift für Anorganische und Allgemeine Chemie 2004, 630, 1977–1981. [Google Scholar] [CrossRef]
- Downie, C.; Tang, Z.J.; Guloy, A.M. An Unprecedented 1∞[Ge9]2− Polymer: A Link between Molecular Zintl Clusters and Solid-State Phases. Angew. Chem. Int. Ed. 2000, 39, 338–340. [Google Scholar] [CrossRef]
- Downie, C.; Mao, J.G.; Parmar, H.; Guloy, A.M. The role of sequestering agents in the formation and structure of germanium anion cluster polymers. Inorg. Chem. 2004, 43, 1992–1997. [Google Scholar] [CrossRef] [PubMed]
- Ugrinov, A.; Sevov, S.C. Synthesis of a chain of nine-atom germanium clusters accompanied with dimerization of the sequestering agent. C. R. Chim. 2005, 8, 1878–1882. [Google Scholar] [CrossRef]
- Fässler, T.F.; Schiegerl, L.; Karttunen, A.; Tillmann, J.; Geier, S.; Raudaschl-Sieber, G.; Waibel, M. Charged Si9 Clusters in Neat Solids and the Detection of [H2Si9]2− in Solution—A Combined NMR, Raman, Mass Spectrometric, and Quantum Chemical Investigation. Angew. Chem. Int. Ed. 2018, 130. [Google Scholar]
- Spek, A.L. Platon, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 1998. [Google Scholar]
- Agilent Technologies. Crysalis Pro, Version 1.171.38.46; Agilent Technologies: Santa Clara, CA, USA, 2017. [Google Scholar]
- Hauptmann, R.; Fässler, T.F. Crystal structure of di [potassium([2.2.2]crypt)] tetrapotassium octadecagermanide (6-)–ethylenediamine solvate (1:6),[K(C18H36N2O6)]2K4(Ge9)2·6C2N2H8. Z. Kristallogr. NCS 2003, 218, 461–463. [Google Scholar]
- Nienhaus, A.; Hoffmann, S.D.; Fässler, T.F. First Synthesis of Group-14 Polyanions by Extraction of a Binary Alloy with dmf and a Novel Conformation of the (Ge9−Ge9)6− Dimer: Crystal Structures of [K6(Ge9−Ge9)](dmf)12,[Rb6(Ge9−Ge9)](dmf)12 and [K2.5Cs3.5(Ge9−Ge9)](dmf)12. Zeitschrift für Anorganische und Allgemeine Chemie 2006, 632, 1752–1758. [Google Scholar] [CrossRef]
- Scharfe, S.; Fässler, T.F. Synthesis of (Ge9–Ge9)6− Dimeric Zintl Ions in Liquid Ammonia Solutions of K4Ge9: Low-Dimensional Coordination Networks in the Crystal Structure of the Ammoniates Kn[K([2.2.2] crypt)]6–n[Ge9–Ge9](NH3)m (n = 2, 3, and 4). Zeitschrift für Anorganische und Allgemeine Chemie 2011, 637, 901–906. [Google Scholar] [CrossRef]
- Benda, C.B.; Wang, J.Q.; Wahl, B.; Fässler, T.F. Syntheses and 1H NMR Spectra of Substituted Zintl Ions [Ge9Rn](4–n)–: Crystal Structures of [Ge9R]3− (R = 2, 4, 6-Me3C6H2, CHCH2) and Indication of Tris-Vinylated Clusters. Eur. J. Inorg. Chem. 2011, 4262–4269. [Google Scholar] [CrossRef]
- Ugrinov, A.; Sevov, S.C. Rationally Functionalized Deltahedral Zintl Ions: Synthesis and Characterization of [Ge9−ER3]3−,[R3E−Ge9−ER3]2−, and [R3E−Ge9−Ge9−ER3]4− (E = Ge, Sn; R = Me, Ph). Chem. Eur. J. 2004, 10, 3727–3733. [Google Scholar] [CrossRef] [PubMed]
- Downie, C.; Mao, J.G.; Guloy, A.M. Synthesis and Structure of [K+-(2,2) diaza-[18]-crown−6][K3Ge9]·2Ethylenediamine: Stabilization of the Two-Dimensional Layer 2∞[K3Ge91−]. Inorg. Chem. 2001, 40, 4721–4725. [Google Scholar] [CrossRef] [PubMed]
- Ugrinov, A.; Sevov, S.C. [Ph2Bi−(Ge9)−BiPh2]2−: A Deltahedral Zintl Ion Functionalized by Exo-Bonded Ligands. J. Am. Chem. Soc. 2002, 124, 2442–2443. [Google Scholar] [CrossRef] [PubMed]
- Wade, K. Structural and bonding patterns in cluster chemistry. Adv. Inorg. Radiochem. 1976, 18, 1–66. [Google Scholar]
- Mingos, D.M.P. Polyhedral skeletal electron pair approach. Acc. Chem. Res. 1984, 17, 311–319. [Google Scholar] [CrossRef]
- Hull, M.W.; Sevov, S.C. Functionalization of nine-atom deltahedral zintl ions with organic substituents: Detailed studies of the reactions. J. Am. Chem. Soc. 2009, 131, 9026–9037. [Google Scholar] [CrossRef] [PubMed]
- Hull, M.W.; Sevov, S.C. Organo-zintl clusters soluble in conventional organic solvents: Setting the stage for organo-zintl cluster chemistry. Inorg. Chem. 2007, 46, 10953–10955. [Google Scholar] [CrossRef] [PubMed]
- Hull, M.W.; Sevov, S.C. Addition of Alkenes to Deltahedral Zintl Clusters by Reaction with Alkynes: Synthesis and Structure of [Fc−CH−CH−Ge9−CH−CH−Fc]2−, an Organo-Zintl–Organometallic Anion. Angew. Chem. Int. Ed. 2007, 46, 6695–6698. [Google Scholar] [CrossRef] [PubMed]
- Samanamu, C.R.; Amadoruge, M.L.; Yoder, C.H.; Golen, J.A.; Moore, C.E.; Rheingold, A.L.; Materer, N.F.; Weinert, C.S. Syntheses, structures, and electronic properties of the branched oligogermanes (Ph3Ge)3GeH and (Ph3Ge)3GeX (X = Cl, Br, I). Organometallics 2011, 30, 1046–1058. [Google Scholar] [CrossRef]
- Hackspill, L. Sur quelques properiétés des métaux alcalins. Helv. Chim. Acta 1928, 11, 1003–1026. [Google Scholar] [CrossRef]
- Suchentrunk, C.; Rossmier, T.; Korber, N. Crystal structures of the [18]-crown-6 ammoniate C12H24O6·2NH3 and the cryptand [2.2.2] ammoniate C18H36O6N2·2NH3. Z. Kristallogr. 2006, 221, 162–165. [Google Scholar]
- Kottke, T.; Stalke, D. Crystal handling at low temperatures. J. Appl. Crystallogr. 1993, 26, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Stalke, D. Cryo crystal structure determination and application to intermediates. Chem. Soc. Rev. 1998, 27, 171–178. [Google Scholar] [CrossRef]
Chemical Formula | [Rb([2.2.2]crypt)]2[Rb([18]crown−6)][HGe9]·4NH3 |
---|---|
CCDC No. * | 1858787 |
Mr [g·mol−1] | 1995.14 |
Crystal system | monoclinic |
Space group | P21/n |
a [Å] | 13.8629(3) |
b [Å] | 14.3533(3) |
c [Å] | 38.8444(6) |
α [°] | 90 |
β [°] | 95.899(2) |
γ [°] | 90 |
V [Å3] | 7688.3(3) |
Z | 4 |
F(000) (e) | 3960.0 |
ρcalc [g·cm−3] | 1.719 |
μ [mm−1] | 5.415 |
Absorption correction | numerical [44] |
Diffractometer (radiation source) | MoKα (λ = 0.71073) |
2θ-range for data collection [°] | 6.4–53.464 |
Reflections collected/independent | 130738/16301 |
Data/restraints/parameters | 16301/18/872 |
Goodness-of-fit on F2 | 1.110 |
Final R indices [I > 2σ(I)] | R1 = 0.0476, wR2 = 0.0791 |
R indices (all data) | R1 = 0.0762, wR2 = 0.0863 |
Rint | 0.0923 |
Δρmax, Δρmax [e·Å−3] | 0.76/−0.51 |
Atom1-Atom2 | Distance (Å) | Atom1-Atom2 | Distance (Å) |
---|---|---|---|
Ge1-H | 1.39(9) | Ge4-Ge8 | 2.584(7) |
Ge1-Ge2 | 2.460(5) | Ge4-Ge5 | 2.693(6) |
Ge1-Ge4 | 2.529(4) | Ge5-Ge6 | 2.852(4) |
Ge1-Ge5 | 2.600(5) | Ge5-Ge8 | 2.788(7) |
Ge1-Ge6 | 2.558(3) | Ge5-Ge9 | 2.639(6) |
Ge2-Ge3 | 2.686(6) | Ge6-Ge7 | 2.758(3) |
Ge2-Ge6 | 2.658(2) | Ge6-Ge9 | 2.588(4) |
Ge2-Ge7 | 2.553(3) | Ge7-Ge8 | 2.874(5) |
Ge3-Ge4 | 2.681(6) | Ge7-Ge9 | 2.579(5) |
Ge3-Ge7 | 2.551(6) | Ge8-Ge9 | 2.576(6) |
Ge3-Ge8 | 2.539(8) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenz, C.; Korber, N. Crystal Structure of the Protonated Germanide Cluster [HGe9]3−. Crystals 2018, 8, 374. https://doi.org/10.3390/cryst8100374
Lorenz C, Korber N. Crystal Structure of the Protonated Germanide Cluster [HGe9]3−. Crystals. 2018; 8(10):374. https://doi.org/10.3390/cryst8100374
Chicago/Turabian StyleLorenz, Corinna, and Nikolaus Korber. 2018. "Crystal Structure of the Protonated Germanide Cluster [HGe9]3−" Crystals 8, no. 10: 374. https://doi.org/10.3390/cryst8100374
APA StyleLorenz, C., & Korber, N. (2018). Crystal Structure of the Protonated Germanide Cluster [HGe9]3−. Crystals, 8(10), 374. https://doi.org/10.3390/cryst8100374