In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion
Abstract
1. Introduction
2. How to Improve the Conversion Efficiency and Why Metal Oxides Can Be Used for This?
2.1. Increase in Operating Temperatures
2.2. Nanostructuring
3. n-Type Oxides Promising for Thermoelectric Applications
4. In2O3 and Its Advantages for Thermoelectric Applications
4.1. Electrophysical Properties
4.2. Thermal Conductivity
4.3. Thermoelectric Conversion Efficiency of In2O3-Based Oxides
4.3.1. Sintered Samples
4.3.2. Thin Nanostructured In2O3 Films
5. Summary
Acknowledgments
Conflicts of Interest
References
- Goldsmid, H.J. Electronic Refrigeration; Pion Limited: London, UK, 1986. [Google Scholar]
- Walia, S.; Balendhran, S.; Nili, H.; Zhuiykov, S.; Rosengarten, G.; Wang, Q.H.; Bhaskaran, M.; Sriram, S.; Strano, M.S.; Kalantar-zadeh, K. Transition metal oxides—Thermoelectric properties. Prog. Mater. Sci. 2013, 58, 1443–1489. [Google Scholar] [CrossRef]
- Date, A.; Date, A.; Dixon, C.; Akbarzadeh, A. Progress of thermoelectric power generation systems: Prospect for small to medium scale power generation. Renew. Sustain. Energy Rev. 2014, 33, 371–381. [Google Scholar] [CrossRef]
- Zheng, X.F.; Liu, C.X.; Yann, Y.Y.; Wang, Q. A review of thermoelectrics research—Recent developments and potentials for sustainable and renewable energy applications. Renew. Sustain. Energ. Rev. 2014, 32, 486–503. [Google Scholar] [CrossRef]
- Guan, M.; Wang, K.; Xu, D.; Liao, W.-H. Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes. Energy Convers. Manag. 2017, 138, 30–37. [Google Scholar] [CrossRef]
- Ong, K.S.; Naghavi, M.S.; Lim, C. Thermal and electrical performance of a hybrid design of a solar thermoelectric system. Energy Convers. Manag. 2017, 133, 31–40. [Google Scholar] [CrossRef]
- Riffat, S.B.; Ma, X. Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913–935. [Google Scholar] [CrossRef]
- Rowe, D.W. Thermoelectrics Handbook: Micro to Nano; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric system. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Stabler, F.R. Automotive applications of thermoelectric materials. J. Electron. Mater. 2009, 38, 1245–1251. [Google Scholar] [CrossRef]
- Zhao, D.; Tan, G. A review of thermoelectric cooling: Materials, modeling and applications. Appl. Therm. Eng. 2014, 66, 15–24. [Google Scholar] [CrossRef]
- Kütt, L.; Millar, J.; Karttunen, A.; Lehtonen, M.; Karppinen, M. Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves. Renew. Sust. Energy Rev. 2017, in press. [Google Scholar]
- Siddique, A.R.M.; Mahmud, S.; Van Heyst, B. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sustain. Energy Rev. 2017, 73, 730–744. [Google Scholar] [CrossRef]
- Koumoto, K.; Wang, Y.; Zhang, Z.; Kosuga, A.; Funahashi, R. Oxide thermoelectric materials: A nanostructuring approach. Annu. Rev. Mater. Res. 2010, 40, 363–394. [Google Scholar] [CrossRef]
- Mahan, G.D. Figure-of-merit for thermoelectrics. J. Appl. Phys. 1989, 65, 1578. [Google Scholar] [CrossRef]
- Nolas, G.S.; Sharp, J.; Goldsmid, H.J. Thermoelectrics Basic Principles and New Materials Developments; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Maignan, A.; Hébert, S.; Pelloquin, D.; Martin, C.; Pralong, V.; Caignaert, V.; Klein, Y. Thermoelectric oxides: Important role of the transition metal spin states. In Proceedings of the IEEE International Conference on Thermoelectrics, Vienna, Austria, 6–10 August 2006; p. 17. [Google Scholar]
- Ohta, H.; Sugiura, K.; Koumoto, K. Recent progress in oxide thermoelectric materials: p-Type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem. 2008, 47, 8429–8436. [Google Scholar] [CrossRef] [PubMed]
- Bierwagen, O.; Speck, J.S. High electron mobility In2O3 (001) and (111) thin films with nondegenerate electron concentration. Appl. Phys. Lett. 2010, 97, 072103. [Google Scholar] [CrossRef]
- Preissler, N.; Bierwagen, O.; Ramu, A.T.; Speck, J.S. Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films. Phys. Rev. B 2013, 88, 085305. [Google Scholar] [CrossRef]
- Zheng, J.C. Recent advances on thermoelectric materials. Front. Physiol. China 2008, 3, 269–279. [Google Scholar] [CrossRef]
- Minnnich, A.J.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Liu, W.; Yan, X.; Chen, G.; Ren, Z. Recent advances in thermoelectric nanocomposites. Nano Energy 2012, 1, 42–56. [Google Scholar] [CrossRef]
- Gayner, C.; Kar, K.K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330–382. [Google Scholar] [CrossRef]
- Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Macklin, W.J.; Moseley, P.T. On the use of oxides for thermoelectric refrigeration. Mater. Sci. Eng. B 1990, 7, 111–117. [Google Scholar] [CrossRef]
- Ohtaki, M.; Ogura, D.; Eguchi, K.; Arai, H. High-temperature thermoelectric properties of In2O3-based mixed oxides and their applicability to thermoelectric power generation. J. Mater. Chem. 1994, 4, 653–656. [Google Scholar] [CrossRef]
- Koumoto, K.; Funahashi, R.; Guilmeau, E.; Miyazaki, Y.; Weidenkaff, A.; Wang, Y.; Wa, C. Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 2013, 96, 1–23. [Google Scholar] [CrossRef]
- He, J.; Liu, Y. Oxide thermoelectrics: The challenges, progress, and outlook. J. Mater. Res. 2011, 26, 1762–1772. [Google Scholar] [CrossRef]
- Zhu, Q.; Hopper, E.M.; Ingram, B.J.; Mason, T.O. Combined Jonker and Ioffe analysis of oxide conductors and semiconductors. J. Am. Ceram. Soc. 2011, 94, 187–193. [Google Scholar] [CrossRef]
- Nag, A.; Shubha, V. Oxide thermoelectric materials: A structure–property relationship. J. Electron. Mater. 2014, 43, 962–977. [Google Scholar] [CrossRef]
- Ren, G.; Lan, J.; Zeng, C.; Liu, Y.; Zhan, B.; Butt, S.; Lin, Y.H.; Nan, C.W. High performance oxides-based thermoelectric materials. JOM 2015, 67, 211–221. [Google Scholar] [CrossRef]
- Yin, Y.; Tudu, B.; Tiwari, A. Recent advances in oxide thermoelectric materials and modules. Vacuum 2017, 146, 356–374. [Google Scholar] [CrossRef]
- Zhao, L.-D.; He, J.; Berardan, D.; Lin, Y.; Li, J.-F.; Nan, C.-W.; Dragoe, N. BiCuSeO oxyselenides: New promising thermoelectric materials. Energy Environ. Sci. 2014, 7, 2900–2924. [Google Scholar] [CrossRef]
- Mahan, G. Benedicks effect: Nonlocal electron transport in metals. Phys. Rev. B 1991, 43, 3945–3951. [Google Scholar] [CrossRef]
- Anatychuk, L.I.; Bulat, L.P. Thermoelectric phenomena under large temperature gradients. In CRC Handbook of Thermoelectrics; Rowe, D.M., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 3–8. [Google Scholar]
- Lan, J.; Lin, Y.H.; Liu, Y.; Xu, S.; Nan, C.-W. High thermoelectric performance of nanostructured In2O3-based ceramics. J. Am. Ceram. Soc. 2012, 95, 2465–2469. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.-H.; Xu, W.; Cheng, B.; Lan, J.; Chen, D.; Zhu, H.; Nan, C.-W. High-temperature transport property of In2−xCexO3 (0 ≤ x ≤ 0.10) fine grained ceramics. J. Am. Ceram. Soc. 2012, 95, 2568–2572. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, W.; Liu, D.-B.; Yu, M.; Lin, Y.-H.; Nan, C.-W. Enhanced thermoelectric properties of Ga-doped In2O3 ceramics via synergistic band gap engineering and phonon suppression. Phys. Chem. Chem. Phys. 2015, 17, 11229–11233. [Google Scholar] [CrossRef] [PubMed]
- Minnich, A.; Lee, H.; Wang, X.; Joshi, G.; Dresselhaus, M.; Ren, Z.; Chen, G.; Vashaee, D. Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B 2009, 80, 155327. [Google Scholar] [CrossRef]
- Liu, W.; Tan, X.; Yin, K.; Liu, H.; Tang, X.; Shi, J.; Zhang, Q.; Uher, C. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 2012, 108, 166601. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Liang, D.; Feng, X.; Zhao, W.; Chen, Y.; He, Y. Thermoelectric properties of MnSi1.7 films with addition of aluminum and carbon. Mod. Phys. Lett. B 2007, 21, 1447–1460. [Google Scholar] [CrossRef]
- Fergus, J.W. Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 2012, 32, 525–540. [Google Scholar] [CrossRef]
- Fujita, K.; Mochida, T.; Nakamura, K. High-temperature thermoelectric properties of NaxCoO2−δ single crystals. Jpn. J. Appl. Phys. 2001, 40, 4644–4647. [Google Scholar] [CrossRef]
- Terasaki, I. Physics of the thermoelectric oxide NaCo2O4: A guide to new thermoelectric oxides. In Proceedings of the 21st International IEEE Conference on Thermoelectronics, Long Beach, CA, USA, 25–29 August 2002; pp. 185–191. [Google Scholar]
- Li, S.; Funahashi, R.; Matsubara, I.; Ueno, K.; Yamada, H. High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem. 1999, 9, 1659–1660. [Google Scholar] [CrossRef]
- Funahashi, R.; Matsuhara, I. Thermoelectric properties of Pb- and Ca-doped (Bi2Sr2O4), CoO2 whiskers. Appl. Phys. Lett. 2001, 79, 362–364. [Google Scholar] [CrossRef]
- Hebert, S.; Lambert, S.; Pelloquin, D.; Maignan, A. Large thermopower in a metallic cobaltite: The layered Tl-Sr-Co-O misfit. Phys. Rev. B 2001, 64, 172101. [Google Scholar] [CrossRef]
- Pelloquin, D.; Maignan, A.; Hehert, S.; Martin, C.; Hervieu, M.; Wang, L.B.; Raveau, B. New misfit cobaltites [Pb0.7A0.4Sr1.9O3][CoO2]1.8 (A = Hg, Co) with large thermopower. Chem. Mater. 2002, 14, 3100–3105. [Google Scholar] [CrossRef]
- Nagira, T.; Ito, M.; Katsuyama, S.; Majima, K.; Nagai, H. Thermoelectric properties of (Na1−yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y = 0.01 ~ 0.35). J. Alloys Comp. 2003, 348, 263–269. [Google Scholar] [CrossRef]
- Funahashi, R.; Matsuhara, I.; Ikuta, H.; Takeuchi, T.; Mizutani, U.; Sodeoka, S. An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. Part 2 2000, 39, L1127–L1129. [Google Scholar] [CrossRef]
- Motohashi, T.; Naujalis, E.; Ueda, R.; Isawa, K.; Karppinen, M.; Yamauchi, H. Simultaneously enhanced thermoelectric power and reduced resistivity of NaxCo2O4, by controlling Na nonstoichiometry. Appl. Phys. Lett. 2001, 79, 1480–1482. [Google Scholar] [CrossRef]
- Terasaki, I.; Ishii, Y.; Tanaka, D.; Takahata, K.; Iguchi, Y. Thermoelectric properties of NaCo2–x-CuxO4 improved by the substitution of Cu for CO. Jpn. J. Appl. Phys. 2001, 40, L65–L67. [Google Scholar] [CrossRef]
- Terasaki, I. Thermoelectric materials in layered transition-metal oxides. In Proceedings of the IEEE International Conference on Thermoelectrics, Clemson, SC, USA, 19–23 June 2005; pp. 289–294. [Google Scholar]
- Lan, J.L.; Liu, Y.C.; Zhan, B.; Lin, Y.H.; Zhang, B.; Yuan, X.; Zhang, W.; Xu, W.; Nan, C.W. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv. Mater. 2013, 25, 5086–5090. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Li, J.; He, J.; Pei, Y.-L.; Berardan, D.; Wu, H.; Dragoe, N.; Cai, W.; Zhao, L.D. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ. Sci. 2013, 6, 2916–2920. [Google Scholar] [CrossRef]
- Barreteau, C.; Berardan, D.; Zhao, L.; Dragoe, N. Influence of Te substitution on the structural and electronic properties of thermoelectric BiCuSeO. J. Mater. Chem. A 2013, 1, 2921–2926. [Google Scholar] [CrossRef]
- Sun Lee, D.; An, T.-H.; Jeong, M.; Choi, H.-S.; Lim, Y.S.; Seo, W.-S.; Park, C.-H.; Park, C.; Park, H.-H. Density of state effective mass and related charge transport properties in K-doped BiCuOSe. Appl. Phys. Lett. 2013, 103, 232110. [Google Scholar] [CrossRef]
- Li, F.; Wei, T.-R.; Kang, F.; Li, J.-F. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. J. Mater. Chem. A 2013, 1, 11942–11949. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Y.; Zhao, L.-D.; An, P.; Lin, Y.-H.; Marcelli, A.; Wu, Z. Evidence of an interlayer charge transfer route in BiCu1-xSeO. J. Mater. Chem. A 2013, 1, 12154–12158. [Google Scholar] [CrossRef]
- MacDonald, D.K.C.; Roy, S.K. Vibrational anharmonicity and lattice thermal properties. II. Phys. Rev. 1955, 97, 673–676. [Google Scholar] [CrossRef]
- Roufosse, M.; Klemens, P. Thermal conductivity of complex dielectric crystals. Phys. Rev. B 1973, 7, 5379–5386. [Google Scholar] [CrossRef]
- Sanditov, D.; Belomestnykh, V. Relation between the parameters of the elasticity theory and averaged bulk modulus of solids. Tech. Phys. 2011, 56, 1619–1623. [Google Scholar] [CrossRef]
- Li, J.F.; Liu, W.S.; Zhao, L.D.; Zhou, M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2010, 2, 152–158. [Google Scholar] [CrossRef]
- Kusainova, A.; Berdonosov, P.; Akselrud, L.; Kholodkovskaya, L.; Dolgikh, V.; Popovkin, B.J. New Layered Compounds with the General Composition (MO) (CuSe), Where M = Bi, Nd, Gd, Dy, and BiOCuS: Syntheses and Crystal Structure. Solid State Chem. 1994, 112, 189–191. [Google Scholar]
- Wiebe, C.; Greedan, J.; Gardner, J.; Zeng, Z.; Greenblatt, M. Charge and magnetic ordering in the electron-doped magnetoresistive materials CaMnO3−δ (δ = 0.06, 0.11). Phys. Rev. B 2001, 64, 064421. [Google Scholar] [CrossRef]
- Kieslich, G.; Cerretti, G.; Veremchuk, I.; Hermann, R.P.; Panthofer, M.; Grin, J.; Tremel, W. A chemists view: Metal oxides with adaptive structures for thermoelectric applications. Phys. Status Solidi A 2016, 213, 808–823. [Google Scholar] [CrossRef]
- Koumoto, K.; Terasaki, I.; Funahashi, R. Complex oxide materials for potential thermoelectric applications. Mater. Res. Soc. Bull. 2006, 31, 206–210. [Google Scholar] [CrossRef]
- Berardan, D.; Guilmeau, E.; Maignan, A.; Raveau, B. In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Commun. 2008, 146, 97–101. [Google Scholar] [CrossRef]
- Guilmeau, E.; Bérardan, D.; Simon, Ch.; Maignan, A.; Raveau, B.; Ovono Ovono, D.; Delorme, F. Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at in-site. J. Appl. Phys. 2009, 106, 053715. [Google Scholar] [CrossRef]
- Hicks, L.D.; Dresselhaus, M.S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731. [Google Scholar] [CrossRef]
- Simkin, N.V.; Mahan, G.D. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 2000, 84, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Dames, C.; Dresselhaus, M.S.; Chen, G. Phonon thermal conductivity of superlattice nanowires for thermoelectric applications. MRS Proc. 2003, 793, 15–20. [Google Scholar] [CrossRef]
- Vashaee, D.; Shakouri, A. Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 2004, 92, 106103. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.G.; Han, G.; Yang, L.; Cheng, L.; Zou, J. Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci. Mater. Int. 2012, 22, 535–549. [Google Scholar] [CrossRef]
- Kanatzidis, M.G. Nanostructured thermoelectric: The new paradigm? Chem. Mater. 2010, 22, 648. [Google Scholar] [CrossRef]
- Vineis, C.J.; Shakouri, A.; Marjumdar, A.; Kanatzidis, M.G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 2010, 22, 3970. [Google Scholar] [CrossRef] [PubMed]
- GroB, E.; Riffel, M.; Stohrer, U. Thermoelectric generators made of FeSi2 and HMS: Fabrication and measurement. J. Mater. Res. 1995, 10, 34–40. [Google Scholar] [CrossRef]
- Hsu, K.F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J.S.; Uher, C.; Hogan, T.; Polychroniadis, E.K.; Kanatzidis, M.G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.G.; Lee, H.; Wang, D.Z.; Ren, Z.F.; Fleurial, J.P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Lan, J.; Lin, Y.H.; Fang, H.; Mei, A.; Nan, C.W.; Liu, Y.; Xu, S.; Peters, M. High-temperature thermoelectric behaviors of fine-grained Gd-doped CaMnO3 ceramics. J. Am. Ceram. Soc. 2010, 93, 2121–2124. [Google Scholar] [CrossRef]
- Ohta, H. Thermoelectrics based on strontium titanate. Mater. Today 2007, 10, 44–49. [Google Scholar] [CrossRef]
- Flahaut, D.; Mihara, T.; Funahashi, R.; Nabeshima, N.; Lee, K.; Ohta, H.; Koumoto, K. Thermoelectrical properties of A-site substituted Ca1−xRexMnO3 system. J. Appl. Phys. 2006, 100, 084911. [Google Scholar] [CrossRef]
- Ohta, S.; Nomura, T.; Ohta, H.; Koumoto, K. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 2005, 97, 034106. [Google Scholar] [CrossRef]
- Migiakis, P.; Androulakis, J.; Giapintzakis, J. Thermoelectric properties of LaNi1−xCoxO3 solid solution. J. Appl. Phys. 2005, 94, 7616–7620. [Google Scholar] [CrossRef]
- Ohta, S.; Nomura, T.; Ohta, H.; Hirano, M.; Hosono, H.; Koumoto, K. Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 2005, 87, 092108. [Google Scholar] [CrossRef]
- Ohta, H.; Kim, S.; Mune, Y.; Mizoguchi, T.; Nomura, K.; Ohta, S.; Nomura, T.; Nakanishi, Y.; Ikuhara, Y.; Hirano, M.; et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 2007, 6, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Han, L.; Ba, Y.; Wang, Y.; Wan, C.; Fujinami, K.; Koumoto, K. Effects of YSZ additions on thermoelectric properties of Nb-doped strontium titanate. J. Electron. Mater. 2010, 39, 1777. [Google Scholar] [CrossRef]
- Wang, N.; Han, L.; He, H.; Ba, Y.; Koumoto, K. Effects of mesoporous silica addition on thermoelectric properties of Nb-doped SrTiO3. J. Alloys Compd. 2010, 497, 308. [Google Scholar] [CrossRef]
- Wang, N.; He, H.; Ba, Y.; Wan, C.; Koumoto, K. Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition. J. Ceram. Soc. Jpn. 2010, 118, 1098. [Google Scholar] [CrossRef]
- Wang, Y.; Fujinami, K.; Zhang, R.; Wan, C.; Ba, Y.; Koumoto, K. Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3. Appl. Phys. Express 2010, 3, 031101. [Google Scholar] [CrossRef]
- Abutaha, A.I.; Kumar, S.; Li, K.; Dehkordi, A.; Tritt, T.M.; Alshareef, H. Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3. Chem. Mater. 2015, 27, 2165–2171. [Google Scholar] [CrossRef]
- Pickett, W.E. Electronic structure of the high-temperature oxide superconductors. Rev. Mod. Phys. 1989, 61, 433–512. [Google Scholar] [CrossRef]
- Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 1998, 70, 1039–1263. [Google Scholar] [CrossRef]
- Terasaki, I.; Iwakawa, M.; Nakano, T.; Tsukuda, A.; Kobayashi, W. Novel thermoelectric properties of complex transition-metal oxides. Dalton Trans. 2010, 39, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Terasaki, I. High-temperature oxide thermoelectrics. J. Appl. Phys. 2011, 110, 053705. [Google Scholar] [CrossRef]
- Okinaka, N.; Akiyama, T. Thermoelectric properties of non-stoichiometric titanium oxides for wasre heat recovery in steel works. ISIJ Int. 2010, 50, 1296–1299. [Google Scholar] [CrossRef]
- Kurita, D.; Ohta, S.; Sugiura, K.; Ohta, H.; Koumoto, K. Carrier generation and transport properties of heavily Nb-doped anatase TiO2 epitaxial films at high temperatures. J. Appl. Phys. 2006, 100, 096105. [Google Scholar] [CrossRef]
- Sheppard, L.R.; Bak, T.; Nowotny, J. Electrical properties of niobium-doped titanium dioxide. 1. Defect disorder. J. Phys. Chem. B 2006, 110, 22447–22454. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, L.R.; Bak, T.; Nowotny, J. Electrical properties of niobium-doped titanium dioxide. 3. Thermoelectric power. J. Phys. Chem. C 2008, 112, 611–617. [Google Scholar] [CrossRef]
- Miao, L.; Tanemura, S.; Huang, R.; Liu, C.Y.; Huang, C.M.; Xu, G. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion. ACS Appl. Mater. Interfaces 2010, 2, 2355–2359. [Google Scholar] [CrossRef] [PubMed]
- Tsuyumoto, I.; Hosono, T.; Murata, M. Thermoelectric power in nonstoichiometric orthorhombic titanium oxides. J. Am. Ceram. Soc. 2006, 89, 2301–2303. [Google Scholar] [CrossRef]
- Tsubota, T.; Ohtaki, M.; Eguchi, K.; Arai, H. Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J. Mater. Chem. 1997, 7, 85–90. [Google Scholar] [CrossRef]
- Ohtaki, M.; Tsubota, T.; Eguchi, K.; Arai, H. High-temperature thermoelectric properties of (Zn1−xAlx)O. J. Appl. Phys. 1996, 79, 1816–1818. [Google Scholar] [CrossRef]
- Ong, K.P.; Singh, D.J.; Wu, P. Analysis of the thermoelectric properties of n-type ZnO. Phys. Rev. B 2011, 83, 115110. [Google Scholar] [CrossRef]
- Katsuyama, S.; Takagi, Y.; Ito, M.; Majima, K.; Nagai, H.; Sakai, H.; Yoshimura, K.; Kosuge, K. Thermoelectric properties of (Zn1−yMgy)1–xAlxO ceramics prepared by the polymerized complex method. J. Appl. Phys. 2002, 92, 1391. [Google Scholar] [CrossRef]
- Liang, X. Thermoelectric transport properties of Fe-enriched ZnO with high-temperature nanostructure refinement. ACS Appl. Mater. Interfaces 2015, 7, 7927–7937. [Google Scholar] [CrossRef] [PubMed]
- Liang, X. Thermoelectric transport properties of naturally nanostructured Ga–ZnO ceramics: Effect of point defect and interfaces. J. Eur. Ceram. Soc. 2016, 36, 1643–1650. [Google Scholar] [CrossRef]
- Guilmeau, E.; Díaz-Chao, P.; Lebedev, I.O.; Recnik, A.; Schafer, M.C.; Delorme, F.; Giovannelli, F.; Kosir, M.; Bernik, S. Inversion boundaries and phonon scattering in Ga:ZnO thermoelectric compounds. Inorg. Chem. 2017, 56, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Michiue, Y.; Nishijima, H.; Suzuki, Y.; Mori, T. Synthesis and thermoelectric properties of composite oxides in the pseudobinary system ZnO-Ga2O3. Solid State Sci. 2017, 65, 29–32. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, J.-H.; Cho, S.-J.; Park, J.-S. Studies of thermoelectric transport properties of atomic layer deposited gallium-doped ZnO. Ceram. Int. 2017, 43, 7784–7788. [Google Scholar] [CrossRef]
- Masuda, Y.; Ohta, M.; Seo, W.-S.; Pitschke, W.; Koumoto, K. Structure and thermoelectric transport properties of isoelectronically substituted (ZnO)5In2O3. J. Solid State Chem. 2000, 150, 221–227. [Google Scholar] [CrossRef]
- Isobe, S.; Tani, T.; Masuda, Y.; Seo, W.-S.; Koumoto, K. Thermoelectric performance of Yttrium-substituted (ZnO)5In2O3 improved through ceramic texturing. Jpn. J. Appl. Phys. 2002, 41, 731–732. [Google Scholar] [CrossRef]
- Ohta, H.; Seo, W.-S.; Koumoto, K. Thermoelectric properties of homologous compounds in the ZnO-In2O3 system. J. Am. Ceram. Soc. 1996, 79, 2193–2196. [Google Scholar] [CrossRef]
- Liang, X.; Baram, M.; Clarke, D.R. Thermal (Kapitza) resistance of interfaces in compositional dependent ZnO-In2O3 superlattices. Appl. Phys. Lett. 2013, 102, 223903. [Google Scholar] [CrossRef]
- Liang, X.; Clarke, D.R. Relation between thermolectric properties and phase equilibria in the ZnO–In2O3 binary system. Acta Mater. 2014, 63, 191–201. [Google Scholar] [CrossRef]
- Bernik, S.; Kosir, M.; Guilmeau, E. Microstructure and thermoelectric characteristics of (ZnO)kIn2O3–based ceramics (k = 5 and 11). Zastita Mater. 2016, 57, 318–325. [Google Scholar] [CrossRef]
- Kosir, M.; Podlogar, M.; Daneu, N.; Recnik, A.; Guilmeau, E.; Bernik, S. Phase formation, microstructure development and thermoelectric properties of (ZnO)kIn2O3 ceramics. J. Eur. Ceram. Soc. 2017, 37, 2833–2842. [Google Scholar] [CrossRef]
- Moriga, T.; Edwards, D.D.; Mason, T.O.; Palmer, G.B.; Poeppelmeier, K.R.; Schindler, J.L.; Kannewurf, C.R.; Nakabayashi, I. Phase relationships and physical properties of homologous compounds in the Zinc oxide-Indium oxide system. J. Am. Ceram. Soc. 1998, 81, 1310–1316. [Google Scholar] [CrossRef]
- Kimizuka, N.; Isobe, M.; Nakamura, M. Syntheses and single-crystal data of homologous compounds, In2O3(ZnO)m (m = 3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m = 7, 8, 9, and 16) in the In2O3–ZnGa2O4–ZnO system. J. Solid State Chem. 1995, 116, 170–178. [Google Scholar] [CrossRef]
- Kimizuka, N.; Yamazaki, S. Layered compounds in the In2O3–Ga2O3–ZnO system and related compounds in the ternary system. In Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Fundamentals; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 1–49. [Google Scholar]
- Yoon, S.W. Ga ordering and electrical conductivity in nanotwin and superlattice-structured Ga-doped ZnO. Cryst. Growth Des. 2012, 12, 1167–1172. [Google Scholar] [CrossRef]
- Ohtaki, M.; Araki, K.; Yamamoto, K. High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 2009, 38, 1234–1238. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, B.; Ye, D.; Liu, Y.; Li, S. Enhanced Al/Ni co-doping and power factor in textured ZnO thermoelectric ceramics prepared by hydrothermal synthesis and spark plasma sintering. J. Alloys Compd. 2016, 656, 784–792. [Google Scholar] [CrossRef]
- Jood, P.; Mehta, R.J.; Zhang, Y.L.; Peleckis, G.; Wang, X.L.; Siegel, R.W.; Borca-Tasciuc, T.; Dou, S.X.; Ramanath, G. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 2011, 11, 4337–4342. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-H.; Xie, H.-Q.; Zhai, Y.-B. Enhanced thermoelectric figure of merit in nanostructured ZnO by nanojunction effect. Appl. Phys. Lett. 2013, 103, 243901. [Google Scholar] [CrossRef]
- Liang, X. Remarkable enhancement in the Kapitza resistance and electron potential barrier of chemically modified In2O3(ZnO)9 natural superlattice interfaces. Phys. Chem. Chem. Phys. 2015, 17, 29655–29660. [Google Scholar] [CrossRef] [PubMed]
- Kosir, M.; Ceh, M.; Ow-Yang, C.W.; Guilmeau, E.; Bernik, S. Structural features and thermoelectric properties of Al-doped (ZnO)5In2O3 homologous phases. J. Am. Ceram. Soc. 2017, 100, 3712–3721. [Google Scholar] [CrossRef]
- Schauble, N.; Suess, B.E.; Populoh, S.; Weidenkaff, A.; Aguirre, M.H. A morphology study on thermoelectric Al-substituted ZnO. AIP Conf. Proc. 2012, 1449, 421–424. [Google Scholar]
- Wang, C.; Wang, Y.; Zhang, G.; Peng, C.; Yang, Y. Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires. Phys. Chem. Chem. Phys. 2014, 16, 3771–3776. [Google Scholar] [CrossRef] [PubMed]
- Brinzari, V.; Damaskin, I.; Trakhtenberg, L.; Cho, B.K.; Korotcenkov, G. Thermoelectrical properties of spray pyrolyzed indium oxide thin films doped by tin. Thin Solid Films 2014, 552, 225–231. [Google Scholar] [CrossRef]
- Brinzari, V.; Nika, D.L.; Damaskin, I.; Cho, B.K.; Korotcenkov, G. Electrical conductivity and Seebeck coefficient of nanoscaled indium-tin-oxide within the electron filtering model. Phys. E 2016, 81, 49–58. [Google Scholar] [CrossRef]
- Brinzari, V.I.; Cocemasov, A.I.; Nika, D.L.; Korotcenkov, G.S. Ultra-low thermal conductivity of nanogranular indium tin oxide films deposited by spray pyrolysis. Appl. Phys. Lett. 2017, 110, 071904. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Trakhtenberg, L.; Cho, B.K. In2O3-based thin films deposited by spray pyrolysis as promising thermoelectric material. Adv. Mater. Res. 2014, 1043, 40–44. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications. Solid State Sci. 2016, 52, 141–148. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. Nanoscaled In2O3:Sn films as material for thermoelectric applications: Achievements and limitations. Bull. Mater. Sci. 2016, 9, 1349–1354. [Google Scholar] [CrossRef]
- Rauf, I.A. Structure and properties of tin-doped indium oxide thin films prepared by reactive electron-beam evaporation with a zone-confining arrangement. J. Appl. Phys. 1996, 79, 4057. [Google Scholar] [CrossRef]
- Taga, N.; Shigesato, Y.; Kamei, M. Electrical properties and surface morphology of heteroepitaxial-grown tin-doped indium oxide thin films deposited by molecular-beam epitaxy. J. Vac. Sci. Technol. A 2000, 18, 1663–1667. [Google Scholar] [CrossRef]
- Gregory, O.; Luo, Q.; Crisman, E. High temperature stability of indium tin oxide films. Thin Solid Films 2002, 406, 286–293. [Google Scholar] [CrossRef]
- Cheng, B.; Fang, H.; Lan, J.; Liu, Y.; Lin, Y.-H.; Nan, C.-W. Thermoelectric performance of Zn and GeCo-doped In2O3 fine-grained ceramics by the spark plasma sintering. J. Am. Ceram. Soc. 2011, 94, 2279–2281. [Google Scholar] [CrossRef]
- Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 1992, 46, 6131–6140. [Google Scholar] [CrossRef]
- Bhame, S.D.; Zhou, T.; Guilmeau, E.; Kinemuchi, Y.; Delorme, F.; Raveau, B. Synthesis and thermoelectric properties of oxygen deficient fluorite derivative Ga3-xIn5+xSn2O16. J. Appl. Phys. 2010, 108, 093708. [Google Scholar] [CrossRef]
- Hoel, C.A.; Mason, T.O.; Gaillard, J.-F.; Poeppelmeier, K.R. Transparent conducting oxides in the ZnO-In2O3-SnO2 system. Chem. Mater. 2010, 22, 3569–3579. [Google Scholar] [CrossRef]
- Zhu, B.B.; Zhang, T.; Tian, R.; Tan, T.T.; Donelson, R.S.; Li, S. Enhancement of thermoelectric properties in Sn doped (In0.95Lu0.05)2O3. J. Alloys Compd. 2015, 644, 119–123. [Google Scholar] [CrossRef]
- Van Hest, M.F.A.M.; Dabney, M.S.; Perkins, J.D.; Ginley, D.S.; Taylor, M.P. Titanium-doped Indium oxide: A high-mobility transparent conductor. Appl. Phys. Lett. 2005, 87, 032111. [Google Scholar] [CrossRef]
- Koida, T.; Kondo, M. Comparative studies of transparent conductive Ti-, Zr-, and Sn-doped In2O3 using a combinatorial approach. J. Appl. Phys. 2007, 101, 063713. [Google Scholar] [CrossRef]
- Van Hest, M.F.A.M.; Dabney, M.S.; Perkins, J.D.; Ginley, D.S. High mobility molybdenum doped indium oxide. Thin Solid Films 2006, 496, 70–74. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Miao, W.; Huang, L.; Zhang, Z. Transparent conductive oxide thin films of tungsten-doped indium oxide. Thin Solid Films 2006, 515, 2471–2474. [Google Scholar] [CrossRef]
- Calnan, S.; Tiwari, A.N. High mobility transparent conducting oxides for thin film solar cells. Thin Solid Films 2010, 518, 1839–1849. [Google Scholar] [CrossRef]
- Koida, T.; Fujiwara, H.; Kondo, M. Structural and electrical properties of hydrogen-doped In2O3 films fabricated by solid-phase crystallization. J. Non-Cryst. Solids 2008, 354, 2805–2808. [Google Scholar] [CrossRef]
- Bierwagen, O.; Speck, J.S. Plasma-assisted molecular beam epitaxy of Sn-doped In2O3:Sn incorporation, structural changes, doping limits, and compensation. Phys. Status Solidi A 2014, 211, 48–53. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. The role of grain size on the thermal stability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization. Prog. Cryst. Growth Charact. Mater. 2012, 58, 167–208. [Google Scholar] [CrossRef]
- Giaquinta, D.M.; Davis, W.M.; Zur Loye, H.C. Structure of indium iron oxide. Acta Crystallogr. C 1994, 50, 5–7. [Google Scholar] [CrossRef]
- Yoo, Y.K.; Xue, Q.; Lee, H.-C.; Cheng, S.; Xiang, X.-D.; Dionne, G.F.; Xu, S.; He, J.; Chu, Y.S.; Preite, S.D.; et al. Bulk synthesis and high–temperature ferromagnetism of (In1−xFex)2O3−σ with Cu co–doping. Appl. Phys. Lett. 2005, 86, 042506. [Google Scholar] [CrossRef]
- Ratko, A.; Babushkin, O.; Baran, A.; Baran, S. Sorption and gas sensitive properties of In2O3 based ceramics doped with Ga2O3. J. Eur. Ceram. Soc. 1998, 18, 2227–2232. [Google Scholar] [CrossRef]
- Frank, G.; Brock, L.; Bausen, H.D. The solubilities of Sn in In2O3 and of In in SnO2 crystals grown from Sn–In melts. J. Cryst. Growth 1976, 36, 179–180. [Google Scholar] [CrossRef]
- Ohya, Y.; Ito, T.; Kaneko, M.; Ban, T.; Takahashi, Y. Solid solubility of SnO2 in In2O3. J. Ceram. Soc. Jpn. 2000, 108, 803–806. [Google Scholar] [CrossRef]
- Gonzalez, G.B.; Mason, T.O.; Okasinski, J.S.; Buslaps, T.; Honkimaki, V. Determination of the solubility of tin in indium oxide using in situ and ex situ X-ray diffraction. J. Am. Ceram. Soc. 2012, 95, 809–815. [Google Scholar] [CrossRef]
- Kaleemulla, S.; Madhusudhana Rao, N.; Girish Joshi, M.; Sivasankar Reddy, A.; Uthanna, S.; Sreedhara Reddy, P. Electrical and optical properties of In2O3:Mo thin films prepared at various Mo–doping levels. J. Alloys Compd. 2010, 504, 351–356. [Google Scholar] [CrossRef]
- Sunde, T.O.L.; Lindgren, M.; Mason, T.O.; Einarsrud, M.-A.; Grande, T. Solid solubility of rare earth elements (Nd, Eu, Tb) in In2−xSnxO3–effect on electrical conductivity and optical properties. Dalton Trans. 2014, 43, 9620–9632. [Google Scholar] [CrossRef] [PubMed]
- Parthiban, S.; Gokulakrishnan, V.; Ramamurthi, K.; Elangovan, E.; Martins, R.; Fortunato, E.; Ganesan, R. High near–infrared transparent molybdenum–doped indium oxide thin films for nanocrystalline silicon solar cell applications. Solar Energy Mater. Sol. Cells 2009, 93, 92–97. [Google Scholar] [CrossRef]
- Park, D.H.; Son, K.Y.; Lee, J.H.; Kim, J.J.; Lee, J.S. Effect of ZnO addition in In2O3 ceramics: Defect chemistry and sintering behavior. Solid State Ion. 2004, 172, 431–434. [Google Scholar] [CrossRef]
- Godzhieva, O.V.; Porotnikov, N.V.; Pikhidchuk, V.P. Physical–chemical study of triple oxides formed in In2O3–CaO–CuO system. Zhur. Neorg. Khim. 1992, 37, 1184–1188. [Google Scholar]
- Horyn, R.; Bukowska, E.; Sikora, A. Studies of BaO–In2O3–CuO ternary system. Part I: Phase equilibria in the isothermal cross–section of 930 °C. J. Alloys Compd. 2000, 305, 103–108. [Google Scholar] [CrossRef]
- Lan, J.-L.; Liu, Y.; Lin, Y.-H.; Nan, C.-W.; Cai, Q.; Yang, C. Enhanced thermoelectric performance of In2O3-based ceramics via nanostructuring and point defect engineering. Sci. Rep. 2015, 5, 7783. [Google Scholar] [CrossRef] [PubMed]
- Bergman, D.J.; Levy, O. Thermoelectric properties of a composite medium. J. Appl. Phys. 1991, 70, 6821. [Google Scholar] [CrossRef]
- Medlin, D.L.; Snyder, G.J. Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 2009, 14, 226. [Google Scholar] [CrossRef]
- Sootsman, J.R.; Chung, D.Y.; Kanatzidis, M.G. New and old concepts in thermoelectric materials. Angew Chem. Int. Ed. 2009, 48, 8616–8639. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Zide, J.; Gossard, A.; Klenov, D.; Stemmer, S.; Shakouri, A.; Majumdar, A. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 2006, 96, 045901. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Scullin, M.L.; Huijben, M.; Ramesh, R.; Majumdar, A. Thermal conductivity reduction in oxygen-deficient strontium titanates. Appl. Phys. Lett. 2008, 92, 191911. [Google Scholar] [CrossRef]
- Zide, J.M.O.; Vashaee, D.; Bian, Z.X.; Zeng, G.H.; Bowers, J.E.; Shakouri, A. Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 2006, 74, 205335. [Google Scholar] [CrossRef]
- Tritt, T.M. Thermal Conductivity: Theory, Properties, and Applications; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Zhou, T.; Bhame, S.D.; Guilmeau, E.; Marinel, S.; Raveau, B. Enhanced densification and thermoelectric performance of In4Sn3O12 by reactive sintering in the In-Sn-Ga-O system. J. Am. Ceram. Soc. 2011, 94, 3733–3737. [Google Scholar] [CrossRef]
- Edwards, D.D.; Mason, T.O.; Sinlker, W.; Marks, L.D.; Goutenoire, F.; Poeppelmeier, K.R. A structural investigation of Ga3−xIn5+xSn2O16. J. Solid State Chem. 1998, 140, 242–250. [Google Scholar] [CrossRef]
- Weidenkaff, A.; Robert, R.; Aguirre, M.H.; Bocher, L.; Schlapbach, L. Nanostructured thermoelectric oxides with low thermal conductivity. Phys. Status Solidi Rapid Res. Lett. 2007, 1, 247–249. [Google Scholar] [CrossRef]
- Ashida, T.; Miyamura, A.; Oka, N.; Sato, Y.; Yagi, T.; Taketoshi, N.; Baba, T.; Shigesato, Y. Thermal transport properties of polycrystalline tin-doped indium oxide film. J. Appl. Phys. 2009, 105, 073709. [Google Scholar] [CrossRef]
- Ohtaki, M. Recent aspects of oxide thermoelectric materials for power generation from mi-to-high temperature heat source. J. Ceram. Soc. Jpn. 2011, 119, 770–775. [Google Scholar] [CrossRef]
- Zebarjadi, M.; Esfarjani, K.; Bian, Z.; Shakouri, A. Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution. Nano Lett. 2011, 11, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, S.H.; Choi, C.J.; Jang, S.P.; Choi, S. A review of thermal conductivity data, mechanisms and models for nanofluids. Int. J. Micro-Nano Scale Transp. 2010, 1, 269–322. [Google Scholar] [CrossRef]
- Renteria, J.D.; Ramirez, S.; Malekpour, H.; Alonso, B.; Centeno, A.; Zurutuza, A.; Cocemasov, A.I.; Nika, D.L.; Balandin, A.A. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 2015, 25, 4664–4672. [Google Scholar] [CrossRef]
- Nika, D.L.; Pokatilov, E.P.; Balandin, A.A.; Fomin, V.M.; Rastelli, A.; Schmidt, O.G. Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering. Phys. Rev. B 2011, 84, 165415. [Google Scholar] [CrossRef]
- Nika, D.L.; Cocemasov, A.I.; Isacova, C.I.; Balandin, A.A.; Fomin, V.M.; Schmidt, O.G. Suppression of phonon heat conduction in cross-section-modulated nanowires. Phys. Rev. B 2012, 85, 205439. [Google Scholar] [CrossRef]
- Nika, D.L.; Cocemasov, A.I.; Crismari, D.V.; Balandin, A.A. Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires. Appl. Phys. Lett. 2013, 102, 213109. [Google Scholar] [CrossRef]
- Kazeoka, M.; Hiramatsu, H.; Seo, W.-S.; Koumoto, K. Improvement in thermoelectric properties of (ZnO)5In2O3 through partial substitution of yttrium for indium. J. Mater. Res. 1998, 13, 523–526. [Google Scholar] [CrossRef]
- Park, K.; Kim, K.K.; Lee, N.; Kim, J.; Seo, W.-S.; Yang, B. High-temperature thermoelectric properties of Sb-containing (ZnO)m(In1-xSbx)2O3 (0 ≤ x <0.1). J. Korean Phys. Soc. 2006, 49, 1548–1552. [Google Scholar]
- Berardan, D.; Guilmeau, E.; Maignan, A.; Raveau, B. Enhancement of the thermoelectric performances of In2O3 by the coupled substitution of M2+/Sn4+ for In3+. J. Appl. Phys. 2008, 104, 064918. [Google Scholar] [CrossRef]
- Combe, E.; Chubileau, C.; Berardan, D.; Guilmeau, E.; Maignan, A.; Raveau, B. Citrate gel process and thermoelectric properties of Ge-doped In2O3 bulk ceramics. Powder Technol. 2011, 208, 503–508. [Google Scholar] [CrossRef]
- Seo, D.K.; Shin, S.; Cho, H.H.; Kong, B.H.; Whang, D.M.; Cho, H.K. Drastic improvement of oxide thermoelectric performance using thermal and plasma treatments of the InGaZnO thin films grown by sputtering. Acta Mater. 2011, 59, 6743–6750. [Google Scholar] [CrossRef]
- Løveng Sunde, T.O.; Einarsrud, M.-A.; Grande, T. Solid state sintering of nano-crystalline indium tin oxide. J. Eur. Ceram. Soc. 2013, 33, 565–574. [Google Scholar] [CrossRef]
- Mori, N.; Ueno, J.; Uesugi, Y.; Miki, K. Thermoelectric properties in transparent-conductive Cerium-doped In2O3 films. e-J. Surf. Sci. Nanotechnol. 2012, 10, 471–475. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.-H.; Lan, J.; Zhang, B.-P.; Xu, W.; Nan, C.-W.; Zhu, H. Thermoelectric performance of Zn and Nd Co-doped In2O3 ceramics. J. Electron. Mater. 2011, 40, 1083–1086. [Google Scholar] [CrossRef]
- Combe, E.; Guilmeau, E.; Savary, E.; Marinel, S.; Cloots, R.; Funahashi, R.; Boschini, F. Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process. J. Eur. Ceram. Soc. 2015, 35, 145–151. [Google Scholar] [CrossRef]
- Amani, M.; Tougas, I.M.; Gregory, O.J.; Fralick, G.C. High-temperature thermoelectric properties of compounds in the system ZnxInyOx+1.5y. J. Electron. Mater. 2013, 42, 114–120. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.-H.; Lan, J.; Xu, W.; Zhang, B.-P.; Nan, C.-W.; Zhu, H. Effect of transition-metal cobalt doping on the thermoelectric performance of In2O3 ceramics. J. Am. Ceram. Soc. 2010, 93, 2938–2941. [Google Scholar] [CrossRef]
- Pitschke, W.; Werner, J.; Behr, G.; Koumoto, K. Structure and thermoelectric properties of Me-substituted In4Sn3O12, Me = Y and Ti. J. Solid State Chem. 2000, 153, 349–356. [Google Scholar] [CrossRef]
- Edwards, D.D.; Mason, T.O.; Goutenoire, F.; Poeppelmeier, K.R. A new transparent conducting oxide in the Ga2O3–In2O3–SnO2 system. Appl. Phys. Lett. 1997, 70, 1706–1708. [Google Scholar] [CrossRef]
- Brinzari, V.; Cho, B.K.; Kamei, M.; Korotcenkov, G. Photoemission surface characterization of (001) In2O3 thin film through the interactions with oxygen, water and carbon monoxide: Comparison with (111) orientation. Appl. Surf. Sci. 2015, 324, 123–133. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. Interference effects between hydrogen and ozone in the response of SnO2-based gas sensors. Sens. Actuators B 2017, 243, 507–515. [Google Scholar] [CrossRef]
- Mizuno, M.; Miyamoto, T.; Ohnishi, T.; Hayashi, H. Effects of thin doping and oxygen vacancies on the electronic states of indium oxide. Jpn. J. Appl. Phys. 1997, 36, 3408–3413. [Google Scholar] [CrossRef]
- Bartolome, J.; Maestre, D.; Cremades, A.; Amatti, M.; Piqueras, J. Composition-dependent electronic properties of indium–zinc–oxide elongated microstructures. Acta Mater. 2013, 61, 1932–1943. [Google Scholar] [CrossRef]
- Vorobyeva, N.A.; Rumyantseva, M.N.; Forsh, P.A.; Gaskov, A.M. Conductivity of nanocrystalline ZnO(Ga). Semiconductors 2013, 47, 650–654. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. In2O3- and SnO2-based ozone sensors: Design and characterization. Crit. Rev. Solid State Mater. Sci. 2017, 1–50. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Stetter, J.R.; Blinov, I.; Blaja, V. The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens. Actuators B 2007, 128, 51–63. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Blinov, I.; Ivanov, M.; Stetter, J.R. Ozone sensors on the base of SnO2 films deposited by spray pyrolysis. Sens. Actuators B 2007, 120, 679–686. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Ivanov, M.; Cerneavschi, A.; Rodriguez, J.; Cirera, A.; Cornet, A.; Morante, J. Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 2005, 479, 38–51. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Bulk doping influence on the response of conductometric SnO2 gas sensors: Understanding through cathodoluminescence study. Sens. Actuators B 2014, 196, 80–98. [Google Scholar] [CrossRef]
- Harvey, S.P.; Poeppelmeier, K.R.; Mason, T.O. Subsolidus phase relationships in the ZnO-In2O3-SnO2 system. J. Am. Ceram. Soc. 2008, 91, 3683–3689. [Google Scholar] [CrossRef]
Dopant | N (1020 cm−3) | μ (cm2/V·s) | ρ (10−4 Ω·cm) |
---|---|---|---|
Mo | 2–7.1 | 50–250 | 0.7–7.3 |
Ti | 0.8–5.0 | 80–199 | 1.0–5.2 |
Zr | 0.8–4.3 | 63–170 | 2.3–5.7 |
W | 2.4–4.0 | 26–358 | 2.7–10 |
Sn | 2–20 | 43–145 | 0.9–6 |
Metal Oxide/Addition | Limit Solubility | Ref. |
---|---|---|
In2O3:Fe | ~20% | [154,155] |
In2O3:Ga | 10%–12% | [156] |
In2O3:Sn | 0.5%–8% | [157,158,159] |
In2O3:Ti | 3%–5% | [71] |
In2O3:Nb | 1%–3% | [160,161] |
In2O3:Mo | 1%–2% | [162] |
In2O3:Ge | 1%–1.5% | [70] |
In2O3:Co | ~1% | [161] |
In2O3:Zn | ~0.5% | [163] |
In2O3:Cu | <<1% | [164,165] |
Metal Oxide | σ, S/cm | S, μV/K | PF, mW/m·K2 | k, W/m·K | ZT | T, K | Ref. |
---|---|---|---|---|---|---|---|
In2O3 | 20–200 | −200–−340 | 0.2–0.23 | 2.5–3.3 | 0.09–0.13 | 1000 | [31,70] |
In2O3:Ce (3–8%) | 120-180 | −160 | 2.3 | 0.21 | 1000 | [39,191] | |
In2O3:(Zn,Ce) (8%) | 420–550 | −140–−150 | 0.81 | 1.5–2.7 | 0.32–0.4 | 1000 | [38,166] |
In2O3:(Zn,Nb) (4%) | 140 | −190 | 0.52 | 2.1 | 0.25 | 1000 | [192] |
In2O3:Ga (10%) | 400 | −160 | 2.3 | 0.37 | 1000 | [40] | |
Ga3−xIn5+xSn2O16 | 200–700 | −90–−145 | 0.36–0.55 | 1.4–1.91 | 0.23–0.27 | 1000 | [71,143] |
In2O3:Ge (1–10%) | 500–1000 | −60–−110 | 0.88 | 3.5–5.0 | 0.12–0.4 | 1000 | [70,193] |
In2O3:Ti (2–6%) | ~900 | −105 | 0.85 | 1.7–3.5 | 0.26 | 1000 | [71] |
In2O3:Sn (2–6%) | 600 | −90–−110 | 0.15–0.94 | 3.0–3.5 | 0.28–04 | 1000 | [28,71] |
(In0.95Lu0.05)2O3:Sn (≤1%) | ~1000 | –75 | 0.5 | 2.5–3.5 | 0.13–014 | 1000 | [145] |
In2O3:ZnO = 3:2 | ~70 | –290 | 0.57 | 3.5 | 0.26 | 1000 | [194] |
In2O3:(Nb,Zn) (4%) | 130 | –190 | 0.53 | 2.1 | 0.25 | 1000 | [192] |
In2O3:Co (2%) | 90 | –200 | 0.46 | 1.8 | 0.20 | 1000 | [195] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotcenkov, G.; Brinzari, V.; Ham, M.-H. In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion. Crystals 2018, 8, 14. https://doi.org/10.3390/cryst8010014
Korotcenkov G, Brinzari V, Ham M-H. In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion. Crystals. 2018; 8(1):14. https://doi.org/10.3390/cryst8010014
Chicago/Turabian StyleKorotcenkov, Ghenadii, Vladimir Brinzari, and Moon-Ho Ham. 2018. "In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion" Crystals 8, no. 1: 14. https://doi.org/10.3390/cryst8010014
APA StyleKorotcenkov, G., Brinzari, V., & Ham, M.-H. (2018). In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion. Crystals, 8(1), 14. https://doi.org/10.3390/cryst8010014