Diffusivity and Mobility of Adsorbed Water Layers at TiO2 Rutile and Anatase Interfaces
Abstract
:1. Introduction
2. Simulation Methodology
Buckingham Potential for TiO2 and Water Oxygen: Aij × exp(-rij/ρij) − Cij/rij6 | |||
i–j | Aij (kcal·mol−1) | ρij (Å) | Cij (kcal·mol−1 Å6) |
Ti–O | 391049.1 | 0.194 | 290.331 |
Ti–Ti | 717647.4 | 0.154 | 121.067 |
O–O | 271716.3 | 0.234 | 696.888 |
Ti–Ow | 28593.0 | 0.265 | 148.000 |
Lennard-Jones potential for water: εij[(σij/rij)1−σij/rij)6] | |||
i–j | εij (kcal·mol−1) | σij (Å) | |
Ow–Ow | 0.1554 | 3.165492 | |
Harmonic potential for water: k/2 × (rij − r0)2 | |||
i–j | kij (kcal·mol−1 Å−2) | R0ij (Å) | |
Ow–Hw | 1059.162 | 1.012 | |
Harmonic angle bending potential for water: k/2 × (θ – θ0) | |||
i–j–k | θ0 deg | k (kcal·mol−1 rad−2) | |
H–O–H | 113.24 | 75.900 | |
Atomic charges: q(Ti) = 2.196 e, q(O) = −1.098 e, q(Ow) = −0.82 e, q(Hw) = 0.41 e; Ow, Hw = water oxygen and hydrogen atoms |
Phase (surface) X, Y, Z (Å) | System Size |
---|---|
Rutile (110) 26.26, 45.47, 69.490 | (TiO2)630 (H2O)2000 |
Anatase (101) 71.46, 26.43, 72.680 | (TiO2)1176 (H2O)3162 |
3. Results and Discussion
Surface | ML | 1L | 2L |
---|---|---|---|
Rutile-(110) | 0.011 ± 0.002, 0.063 ± 0.007, 0.021 ± 0.004 | (0.31,0.37,0.34) ± 0.03 | (0.58,0.60,0.66) ± 0.06 |
Anatase-(101) | 0.70 ± 0.05, 0.75 ± 0.06, 0.67 ± 0.05 | (0.80, 0.81, 0.76) ± 0.07 | (0.83,0.85,0.80) ± 0.08 |
4. Conclusions
Acknowledgements
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Haller, G.L.; Resasco, D.E. Metal–support interaction: Group VIII metals and reducible oxides. Adv. Catal. 1989, 36, 173–235. [Google Scholar]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Henderson, M.A. The interaction of water with solid surfaces: Fundamental aspects revisitied. Surf. Sci. Rep. 2002, 46, 1–308. [Google Scholar] [CrossRef]
- Sun, C.; Lui, L.-M.; Selloni, A.; Lu, G.Q.; Smith, S.C. Titania-water interactions: A review of theoretical studies. J. Mater. Chem. 2010, 20, 10319–10334. [Google Scholar] [CrossRef]
- Levchenko, A.A.; Kolesnikov, A.I.; Ross, N.L.; Boerio-Goates, J.; Woodfield, B.F.; Li, G.; Navrotsky, A. Dynamics of Water Confined on a TiO2 (Anatase) Surf. J. Phys. Chem. A 2007, 111, 12584–12588. [Google Scholar] [CrossRef] [PubMed]
- Spencer, E.C.; Levchenko, A.A.; Ross, N.L.; Kolesnikov, A.I.; Boerio-Goates, J.; Woodfield, B.F.; Navrotsky, A.; Li, G. Inelastic Neutron Scattering Study of Confined Surface Water on Rutile Nanoparticles. J. Phys. Chem. A 2009, 113, 2796–2800. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, G.; Filippone, F.; Caminiti, R.; Bonapasta, A.A. Short Hydrogen Bonds at the Water/TiO2 (Anatase) Interface. J. Phys. Chem. C 2008, 112, 13579–13586. [Google Scholar] [CrossRef]
- Kumar, N.; Neogi, S.; Kent, P.R.C.; Bandura, A.V.; Kubicki, J.D.; Wesolowski, D.J.; Cole, D.; Sofo, J.O. Hydrogen Bonds and Vibrations of Water on (110) Rutile. J. Phys. Chem. C 2009, 113, 13732–13740. [Google Scholar] [CrossRef]
- Russo, D.; Teixeira, J.; Kneller, L.; Copley, J.R. D.; Ollivier, J.; Perticaroli, S.; Pellegrini, E.; Gonzalez, M.A. Vibrational Density of States of Hydration Water at Biomolecular Sites: Hydrophobicity Promotes Low Density Amorphous Ice Behavior. J. Am. Chem. Soc. 2011, 133, 4882–4888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Fenter, P.; Cheng, L.; Sturchio, N.C.; Bedzyk, M.J.; Předota, M.; Bandura, A.; Kubicki, J.D.; Lvov, S.N.; Cummings, P.T.; et al. Ion Adsorption at the Rutile−Water Interface: Linking Molecular and Macroscopic Properties. Langmuir 2004, 20, 4954–4969. [Google Scholar] [CrossRef] [PubMed]
- Predota, M.; Bandura, A.V.; Cummings, P.T.; Kubicki, J.D.; Wesolowski, D.J.; Chialvo, A.A.; Machesky, M.L. Electric Double Layer at the Rutile (110) Surface. 1. Structure of Surfaces and Interfacial Water from Molecular Dynamics by Use of ab Initio Potentials. J. Phys. Chem. B 2004, 108, 12049–12060. [Google Scholar]
- Predota, M.; Cummings, P.T.; Zhang, Z.; Fenter, P.; Wesolowski, D.J. Electric Double Layer at the Rutile (110) Surface. 2. Adsorption of Ions from Molecular Dynamics and X-ray Experiments. J. Phys. Chem. B 2004, 108, 12061–12072. [Google Scholar] [CrossRef]
- Predota, M.; Cummings, P.T.; Wesolowski, D.J. Electric Double Layer at the Rutile (110) Surface. 3. Inhomogeneous Viscosity and Diffusivity Measurement by Computer Simulations. J. Phys. Chem. C 2007, 111, 3071–3079. [Google Scholar] [CrossRef]
- Machesky, M.L.; Predota, M.; Wesolowski, D.J.; Vlcek, L.; Cummings, P.T.; Rosenqvist, J.; Ridley, M.K.; Kubicki, J.D.; Bandura, A.V.; Kumar, N.; et al. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework. Langmuir 2008, 24, 12331–12339. [Google Scholar] [CrossRef] [PubMed]
- Kavathekar, R.; Dev, P.; English, N.J.; MacElroy, J.M.D. Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface. Mol. Phys. 2011, 109, 1649–1656. [Google Scholar] [CrossRef]
- English, N.J.; Kavathekar, R.; MacElroy, J.M.D. Hydrogen-bond dynamical properties of adsorbed liquid water monolayers with various TiO2 interfaces. Mol. Phys. 2012, 110, 2919–2925. [Google Scholar] [CrossRef]
- Kavathekar, R.S.; English, N.J.; MacElroy, J.M.D. Study of translational, librational and intra-molecular motion of adsorbed liquid water monolayers at various TiO2 interfaces. Mol Phys. 2011, 109, 2645–2654. [Google Scholar] [CrossRef]
- Kavathekar, R.; English, N.J.; MacElroy, J.M.D. Spatial distribution of water monolayers at the TiO2 rutile- and anatase-titania interfaces. Chem. Phys. Lett. 2012, 554, 102–106. [Google Scholar] [CrossRef]
- English, N.J. Dynamical properties of physically adsorbed water molecules at the TiO2 rutile-(110) surface. Chem. Phys. Lett. 2013, 583, 125–130. [Google Scholar] [CrossRef]
- Barnard, A.S.; Curtiss, L.A. Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry. Nano Lett. 2005, 5, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Liu, G.; Lu, G.Q.; Cheng, H.-M. On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals. Angew. Chem. Int. Ed. 2011, 50, 2133–2137. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Matsui, M.; Akaogi, M. Molecular dynamics simulations of the structural and physical properties of the four polymorphs of TiO2. Mol. Simul. 1991, 6, 239–244. [Google Scholar] [CrossRef]
- Wu, Y.; Tepper, H.L.; Voth, G.A. Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys. 2006, 124, 024503. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, R.; Delmelle, M.; Cannistraro, S. Role of hydrogen-bond cooperativity and free-volume fluctuations in the non-Arrhenius behavior of water self-diffusion: A continuity-of-states model. Phys. Rev. E 1994, 49, 2841–2850. [Google Scholar] [CrossRef]
- Mamontov, E.; Vlcek, L.; Wesolowski, D.J.; Cummings, P.T.; Wang, W.; Anovitz, L.M.; Rosenqvist, J.; Brown, C.M.; Sakai, V.G. Dynamics and Structure of Hydration Water on Rutile and Cassiterite Nanopowders Studied by Quasielastic Neutron Scattering and Molecular Dynamics Simulations. J. Phys. Chem. C 2007, 111, 4328–4341. [Google Scholar] [CrossRef]
- Raju, M.; Kim, S.-Y.; van Duin, A.C.T.; Fichthorn, K.A. ReaxFF Reactive Force Field Study of the Dissociation of Water on Titania Surfaces. J. Phys. Chem. C 2013, 117, 10558–10572. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
English, N.J. Diffusivity and Mobility of Adsorbed Water Layers at TiO2 Rutile and Anatase Interfaces. Crystals 2016, 6, 1. https://doi.org/10.3390/cryst6010001
English NJ. Diffusivity and Mobility of Adsorbed Water Layers at TiO2 Rutile and Anatase Interfaces. Crystals. 2016; 6(1):1. https://doi.org/10.3390/cryst6010001
Chicago/Turabian StyleEnglish, Niall J. 2016. "Diffusivity and Mobility of Adsorbed Water Layers at TiO2 Rutile and Anatase Interfaces" Crystals 6, no. 1: 1. https://doi.org/10.3390/cryst6010001
APA StyleEnglish, N. J. (2016). Diffusivity and Mobility of Adsorbed Water Layers at TiO2 Rutile and Anatase Interfaces. Crystals, 6(1), 1. https://doi.org/10.3390/cryst6010001