Dissection of the Factors Affecting Formation of a CH∙∙∙O H-Bond. A Case Study
Abstract
:1. Introduction
2. Computational Methods
3. Results
H-bond | B3LYP | MP2 | X-ray |
---|---|---|---|
HN∙∙∙O | 2.276 | 2.116 | 2.364 |
HC2∙∙∙O | 2.517 | 2.417 | 2.538 |
HN∙∙∙Oe | 2.136 | 2.155 | 2.163 |
HC1∙∙∙O | 2.183 | 2.196 | 2.261 |
φ(CaCbNCc) | 180 | −169 | −171 |
φ(Ca’Cb’NCc’) | −92 | −90 | −93 |
3.1. Related Model Molecules
Structure | r(HN∙∙∙O) | r(HC2∙∙∙O) | r(HN∙∙∙Oe) | r(HC1∙∙∙O) | θ(NHN∙∙∙O) | θ(CHC2∙∙∙O) | θ(NHN∙∙∙Oe) | θ(CHC1∙∙∙O) |
---|---|---|---|---|---|---|---|---|
I | 2.276 | 2.517 | 2.136 | 2.183 | 165 | 152 | 106 | 120 |
II | 2.327 | 2.520 | 2.135 | 2.206 | 165 | 154 | 106 | 120 |
III | 2.101 | – | 2.161 | 2.235 | 166 | – | 104 | 120 |
IV | 2.377 | 2.579 | 2.118 | 2.213 | 164 | 154 | 107 | 120 |
V | 2.198 | 2.850 | 2.198 | – | 158 | 143 | 99 | – |
VI | 2.234 | 2.784 | 2.449 | – | 163 | 145 | 97 | – |
VII | 2.135 | – | 2.477 | – | 163 | – | 95 | – |
Structure | NHN∙∙∙O a | CHC2∙∙∙O | NHN∙∙∙Oe | CHC1∙∙∙O |
---|---|---|---|---|
I | 3.80 | 1.49 | 2.65 | 3.62 |
II | 3.17 | 0.97 | 2.68 | 3.25 |
III | 7.30 | – | 2.38 | 3.19 |
IV | 2.63 | 0.79 | 2.92 | 3.18 |
V | 4.81 | – | 0.90 | – |
VI | 4.28 | – | 0.59 | – |
VII | 5.89 | – | – | – |
Structure | φ(CaCbNCc) | φ(Ca’Cb’NCc’) | θ(a-a’) a | φ(a-a’) b |
---|---|---|---|---|
I | 180 | −92 | 73.8 | 57 |
II | 180 | −92 | 74.2 | 57 |
III | −178 | −91 | 65.7 | 53 |
IV | 178 | −92 | 73.1 | 57 |
V | 179 | −92 | 90.5 | 57 |
VI | −136 | −92 | 77.3 | 34 |
VII | −131 | −92 | 78.7 | 33 |
Structure | Upper Amide | Lower Amide | ||
---|---|---|---|---|
+30 | −30 | +30 | −30 | |
I | 1.94 | 2.51 | 2.57 | 1.98 |
II | 1.90 | 2.46 | 2.73 | 1.69 |
III | 2.21 | 2.49 | 2.51 | 2.07 |
IV | 2.02 | 2.40 | 2.47 | 2.00 |
V | 2.73 | 2.85 | 2.21 | 2.05 |
VI | 1.98 | 2.82 | 2.12 | 2.14 |
VII | 2.20 | 2.47 | 2.09 | 2.20 |
3.2. Direct Evaluation of H-Bond Energies
3.3. Consideration of Other Possible Minima
3.4. Nature and Length of Spacer Group
4. Summary and Conclusions
Acknowledgments
Conflicts of Interest
References
- Bartashevich, E.V.; Tsirelson, V.G. Interplay between non-covalent interactions in complexes and crystals with halogen bonds. Russ. Chem. Rev. 2014, 83, 1181–1203. [Google Scholar] [CrossRef]
- Jeffrey, G.A.; Maluszynska, H. A survey of hydrogen bond geometries in the crystal structures of amino acids. Int. J. Biol. Macromol. 1982, 4, 173–185. [Google Scholar] [CrossRef]
- Kroon, J.; Kanters, J.A. Non-linearity of hydrogen bonds in molecular crystals. Nature 1974, 248, 667–668. [Google Scholar] [CrossRef]
- Mukherjee, A.; Tothadi, S.; Desiraju, G.R. Halogen bonds in crystal engineering: Like hydrogen bonds yet different. Acc. Chem. Res. 2014, 47, 2514–2524. [Google Scholar] [CrossRef] [PubMed]
- Aakeröy, C.B.; Panikkattu, S.; Chopade, P.D.; Desper, J. Competing hydrogen-bond and halogen-bond donors in crystal engineering. Cryst. Eng. Comm. 2013, 15, 3125–3136. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G.; Pilati, T.; Biella, S. Halogen bonding in crystal engineering. In Halogen Bonding. Fundamentals and Applications; Metrangolo, P., Resnati, G., Eds.; Springer: Berlin, Germany, 2008; Volume 126, pp. 105–136. [Google Scholar]
- Steiner, T. C–H···O hydrogen bonding in crystals. Cryst. Rev. 2003, 9, 177–228. [Google Scholar] [CrossRef]
- Gould, R.O.; Gray, A.M.; Taylor, P.; Walkinshaw, M.D. Crystal environments and geometries of leucine, isoleucine, valine, and phenylalanine provide estimates of minimum nonbonded contact and preferred van der waals interaction distances. J. Am. Chem. Soc. 1985, 107, 5921–5927. [Google Scholar] [CrossRef]
- Zheng, Q.-N.; Liu, X.-H.; Chen, T.; Yan, H.-J.; Cook, T.; Wang, D.; Stang, P.J.; Wan, L.-J. Formation of halogen bond-based 2D supramolecular assemblies by electric manipulation. J. Am. Chem. Soc. 2015, 137, 6128–6131. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S. A unified view of halogen bonding, hydrogen bonding and other σ-hole interactions. In Noncovalent Forces; Scheiner, S., Ed.; Springer: Dordrecht, The Netherland, 2015; Volume 19, pp. 357–389. [Google Scholar]
- Zierkiewicz, W.; Bieńko, D.C.; Michalska, D.; Zeegers-Huyskens, T. Theoretical investigation of the halogen bonded complexes between carbonyl bases and molecular chlorine. J. Comput. Chem. 2015, 36, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.A.; McDowell, S.A.C. Comparative computational study of model halogen-bonded complexes of FKrCl. J. Phys. Chem. A 2015, 119, 2568–2577. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.W.; Mustoe, C.L.; White, N.G.; Brown, A.; Thompson, A.L.; Kennepohl, P.; Beer, P.D. Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition. J. Am. Chem. Soc. 2015, 137, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, S.J. Halogen bond with the multivalent halogen acting as the lewis acid center. Chem. Phys. Lett. 2014, 605–606, 131–136. [Google Scholar] [CrossRef]
- Hauchecorne, D.; Herrebout, W.A. Experimental characterization of C–X···Y–C (X = Br, I; Y = F, Cl) halogen-halogen bonds. J. Phys. Chem. A 2013, 117, 11548–11557. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, U.; Scheiner, S. Sensitivity of pnicogen, chalcogen, halogen and H-Bonds to angular distortions. Chem. Phys. Lett. 2012, 532, 31–35. [Google Scholar] [CrossRef]
- Bauzá, A.; Quiñonero, D.; Deyà, P.M.; Frontera, A. Halogen bonding versus chalcogen and pnicogen Bonding: A combined cambridge structural database and theoretical study. Cryst. Eng. Comm. 2013, 15, 3137–3144. [Google Scholar] [CrossRef]
- Rosenfield, R.E.; Parthasarathy, R.; Dunitz, J.D. Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J. Am. Chem. Soc. 1977, 99, 4860–4862. [Google Scholar] [CrossRef]
- Adhikari, U.; Scheiner, S. Effects of charge and substituent on the S···N chalcogen bond. J. Phys. Chem. A 2014, 118, 3183–3192. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Jin, W.J. Exploring the halogen bond specific solvent effects in halogenated solvent systems by esr probe. New J. Chem. 2015, 39, 5477–5483. [Google Scholar] [CrossRef]
- Azofra, L.M.; Alkorta, I.; Scheiner, S. Chalcogen bonds in complexes of soxy (X, Y = F, Cl) with Nitrogen Bases. J. Phys. Chem. A 2015, 119, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Nziko, P.N.Z.; Scheiner, S. Intramolecular S···O chalcogen bond as stabilizing factor in geometry of substituted phenyl-SF3 molecules. J. Org. Chem. 2015, 80, 2356–2363. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. The pnicogen bond: Its relation to hydrogen, halogen, and other noncovalent bonds. Acc. Chem. Res. 2013, 46, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. Effects of multiple substitution upon the P...N noncovalent interaction. Chem. Phys. 2011, 387, 79–84. [Google Scholar] [CrossRef]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. Properties of cationic pnicogen-bonded complexes F4–nHnP+:N-Base with F–P···N linear and n = 0–3. J. Phys. Chem. A 2015, 119, 5853–5864. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. Detailed comparison of the pnicogen bond with chalcogen, halogen and hydrogen bonds. Int. J. Quantum Chem. 2013, 113, 1609–1620. [Google Scholar] [CrossRef]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. The pnicogen bond in review: Structures, energies, bonding properties, and spin-spin coupling constants of complexes stabilized by pnicogen bonds. In Noncovalent Forces; Scheiner, S., Ed.; Springer: Dordrecht, The Netherland, 2015; Volume 19, pp. 191–263. [Google Scholar]
- Sarkar, S.; Pavan, M.S.; Guru Row, T.N. Experimental validation of “pnicogen bonding” in nitrogen by charge density analysis. Phys. Chem. Chem. Phys. 2015, 17, 2330–2334. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, U.; Scheiner, S. Substituent effects on Cl···N, S···N, and P···N noncovalent bonds. J. Phys. Chem. A 2012, 116, 3487–3497. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. On the properties of X···N noncovalent interactions for first-, second- and third-row X atoms. J. Chem. Phys. 2011, 134. [Google Scholar] [CrossRef] [PubMed]
- Joesten, M.D.; Schaad, L.J. Hydrogen Bonding; Marcel Dekker: New York, NY, USA, 1974; p. 622. [Google Scholar]
- Schuster, P.; Zundel, G.; Sandorfy, C. The Hydrogen Bond. Recent Developments in Theory and Experiments; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the Hydrogen Bond. Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Falvello, L.R. The hydrogen bond, front and center. Angew. Chem. Int. Ed. Engl. 2010, 49, 10045–10047. [Google Scholar] [CrossRef] [PubMed]
- Latajka, Z.; Scheiner, S. Structure, energetics and vibrational spectrum of H2O-HCl. J. Chem. Phys. 1987, 87, 5928–5936. [Google Scholar] [CrossRef]
- Sandoval-Lira, J.; Fuentes, L.; Quintero, L.; Höpfl, H.; Hernández-Pérez, J.M.; Terán, J.L.; Sartillo-Piscil, F. The stabilizing role of the intramolecular C–H···O hydrogen bond in cyclic amides derived from α-methylbenzylamine. J. Org. Chem. 2015, 80, 4481–4490. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, U.; Scheiner, S. Competition between lone pair–Π, halogen bond, and hydrogen bond in adducts of water with perhalogenated alkenes C2ClnF4−n (n = 0–4). Chem. Phys. 2014, 440, 53–63. [Google Scholar] [CrossRef]
- Latajka, Z.; Scheiner, S. Basis sets for molecular interactions. 2. Application to H3N-HF, H3N-HOH, H2O-HF, (NH3)2, and H3CH–OH2. J. Comput. Chem. 1987, 5, 674–682. [Google Scholar] [CrossRef]
- Grabowski, S.J. Dihydrogen bond and X–H···σ interaction as sub-classes of hydrogen bond. J. Phys. Org. Chem. 2013, 26, 452–459. [Google Scholar] [CrossRef]
- Latajka, Z.; Scheiner, S. Structure, energetics and vibrational spectra of dimers, trimers, and tetramers of HX (X = Cl, Br, I). Chem. Phys. 1997, 216, 37–52. [Google Scholar] [CrossRef]
- Mundlapati, V.R.; Ghosh, S.; Bhattacherjee, A.; Tiwari, P.; Biswal, H.S. Critical assessment of the strength of hydrogen bonds between the sulfur atom of methionine/cysteine and backbone amides in proteins. J. Phys. Chem. Lett. 2015, 6, 1385–1389. [Google Scholar] [CrossRef] [PubMed]
- Matta, C.F.; Hernández-Trujillo, J.; Tang, T.-H.; Bader, R.F.W. Hydrogen-hydrogen bonding: A stabilizing interaction in molecules and crystals. Chem. Eur. J. 2003, 9, 1940–1951. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Trujillo, J.; Matta, C. Hydrogen-hydrogen bonding in biphenyl revisited. Struct. Chem. 2007, 18, 849–857. [Google Scholar] [CrossRef]
- Orlova, G.; Scheiner, S. Intermolecular MH···HF bonding in monohydride Mo and W complexes. J. Phys. Chem. A 1998, 102, 260–269. [Google Scholar] [CrossRef]
- Kar, T.; Scheiner, S. Comparison between hydrogen and dihydrogen bonds among H3BNH3, H2BNH2, and NH3. J. Chem. Phys. 2003, 119, 1473–1482. [Google Scholar] [CrossRef]
- Biswal, H.S.; Wategaonkar, S. Sulfur, not too far behind O, N, and C: SH···π hydrogen bond. J. Phys. Chem. A 2009, 113, 12774–12782. [Google Scholar] [CrossRef] [PubMed]
- Cabaleiro-Lago, E.M.; Rodríguez-Otero, J.; Peña-Gallego, Á. Characteristics of the interaction of azulene with water and hydrogen sulfide: A computational study. J. Chem. Phys. 2008, 129. [Google Scholar] [CrossRef] [PubMed]
- Bhattacherjee, A.; Matsuda, Y.; Fujii, A.; Wategaonkar, S. Acid-base formalism in dispersion-stabilized S–H···Y (Y═O, S) hydrogen-bonding interactions. J. Phys. Chem. A 2015, 119, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Solimannejad, M.; Gharabaghi, M.; Scheiner, S. SH···N and SH···P blue-shifting H-bonds and N···P interactions in complexes pairing HSN with amines and phosphines. J. Chem. Phys. 2011, 134. [Google Scholar] [CrossRef] [PubMed]
- Minkov, V.S.; Boldyreva, E.V. Contribution of Weak S-H···O Hydrogen Bonds to the Side Chain Motions in D,L-Homocysteine on Cooling. J. Phys. Chem. B 2014, 118, 8513–8523. [Google Scholar] [CrossRef] [PubMed]
- Biswal, H.S. Hydrogen bonds involving sulfur: New insights from ab initio calculations and gas phase laser spectroscopy. In Noncovalent Forces; Scheiner, S., Ed.; Springer: Dordrecht, The Netherland, 2015; Volume 19, pp. 15–45. [Google Scholar]
- Cybulski, S.; Scheiner, S. Hydrogen bonding and proton transfers involving triply bonded atoms. HC≡N and HC≡CH. J. Am. Chem. Soc. 1987, 109, 4199–4206. [Google Scholar] [CrossRef]
- Zierke, M.; Smieško, M.; Rabbani, S.; Aeschbacher, T.; Cutting, B.; Allain, F.H.-T.; Schubert, M.; Ernst, B. Stabilization of branched oligosaccharides: Lewis benefits from a nonconventional C–H···O hydrogen bond. J. Am. Chem. Soc. 2013, 135, 13464–13472. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Kar, T.; Scheiner, S. Comparison of the CH···N and CH···O interactions involving substituted alkanes. J. Mol. Struct. 2000, 552, 17–31. [Google Scholar] [CrossRef]
- Michielsen, B.; Verlackt, C.; van der Veken, B.J.; Herrebout, W.A. C–H···X (X = S, P) hydrogen bonding: The complexes of halothane with dimethyl sulfide and trimethylphosphine. J. Mol. Struct. 2012, 1023, 90–95. [Google Scholar] [CrossRef]
- Scheiner, S.; Kar, T. Effect of solvent upon CH···O hydrogen bonds with implications for protein folding. J. Phys. Chem. B 2005, 109, 3681–3689. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Weak interactions between hypohalous acids and dimethylchalcogens. Phys. Chem. Chem. Phys. 2012, 14, 9880–9889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kryachko, E.; Scheiner, S. CH···F Hydrogen bonds. Dimers of fluoromethanes. J. Phys. Chem. A 2004, 108, 2527–2535. [Google Scholar] [CrossRef]
- Scheiner, S. Relative strengths of NH···O and CH···O hydrogen bonds between polypeptide chain segments. J. Phys. Chem. B 2005, 109, 16132–16141. [Google Scholar] [CrossRef] [PubMed]
- Rest, C.; Martin, A.; Stepanenko, V.; Allampally, N.K.; Schmidt, D.; Fernandez, G. Multiple CH···O interactions involving glycol chains as driving force for the self-assembly of amphiphilic Pd(II) complexes. Chem. Commun. 2014, 50, 13366–13369. [Google Scholar] [CrossRef] [PubMed]
- Sigalov, M.V.; Doronina, E.P.; Sidorkin, V.F. Car–H···O hydrogen bonds in substituted isobenzofuranone derivatives: Geometric, topological, and NMR characterization. J. Phys. Chem. A 2012, 116, 7718–7725. [Google Scholar] [CrossRef] [PubMed]
- Madura, I.D.; Zachara, J.; Hajmowicz, H.; Synoradzki, L. Interplay of carbonyl-carbonyl, C–H···O and C–H···π interactions in hierarchical supramolecular assembly of tartaric anhydrides—Tartaric acid and its O-acyl derivatives: Part II. J. Mol. Struct. 2012, 1017, 98–105. [Google Scholar] [CrossRef]
- You, L.-Y.; Chen, S.-G.; Zhao, X.; Liu, Y.; Lan, W.-X.; Zhang, Y.; Lu, H.-J.; Cao, C.-Y.; Li, Z.-T. C–H···O hydrogen bonding induced triazole foldamers: Efficient halogen bonding receptors for organohalogens. Angew. Chem. Int. Ed. 2012, 51, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-M.; Chen, J.C.C.; Chen, H.-Y.; Lin, I.J.B. A triple helical structure supported solely by C–H···O hydrogen bonding. Chem. Commun. 2012, 48, 1242–1244. [Google Scholar] [CrossRef] [PubMed]
- Vibhute, A.M.; Gonnade, R.G.; Swathi, R.S.; Sureshan, K.M. Strength from weakness: Opportunistic CH···O hydrogen bonds differentially dictate the conformational fate in solid and solution states. Chem. Commun. 2012, 48, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, Y.; Goto, M.; Ikeda, T.; Shimoi, Y.; Hayashi, S.; Yamawaki, H.; Kanesato, M. Ntermolecular CH···O hydrogen bonds in formyl-substituted diphenylhexatriene, a [2 + 2] photoreactive organic solid: Crystal structure and IR, NMR spectroscopic evidence. J. Mol. Struct. 2011, 1006, 366–374. [Google Scholar] [CrossRef]
- Jones, C.R.; Baruah, P.K.; Thompson, A.L.; Scheiner, S.; Smith, M.D. Can a C–H···O interaction be a determinant of conformation. J. Am. Chem. Soc. 2012, 134, 12064–12071. [Google Scholar] [CrossRef] [PubMed]
- Derewenda, Z.S.; Lee, L.; Derewenda, U. The occurrence of C–H···O hydrogen bonds in proteins. J. Mol. Biol. 1995, 252, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Mueller, B.K.; Subramanian, S.; Senes, A. A Frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα–H hydrogen bonds. Proc. Nat. Acad. Sci. USA 2014, 111, E888–E895. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.B.; Migues, A.N.; Schaefer, H.F.; Vergenz, R.A. Streptococcal hyaluronate lyase reveals the presence of a structurally significant C–H···O hydrogen bond. Chem. Eur. J. 2014, 20, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Venugopalan, P.; Kishore, R. Unusual folding propensity of an unsubstituted b,g-hybrid model peptide: Importance of the C–H...O intramolecular hydrogen bond. Chem. Eur. J. 2013, 19, 9908–9915. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wong, M.W. Oxyanion hole stabilization by C–H···O interaction in a transition state-a three-point interaction model for cinchona alkaloid-catalyzed asymmetric methanolysis of meso-cyclic anhydrides. J. Am. Chem. Soc. 2013, 135, 5808–5818. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, D.; Li, D.-W.; Godoy-Ruiz, R.; Brschweiler, R.; Tugarinov, V. Variation in quadrupole couplings of α deuterons in ubiquitin suggests the presence of Cα–Hα···O=C hydrogen bonds. J. Am. Chem. Soc. 2010, 132, 7709–7719. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.R.; Qureshi, M.K.N.; Truscott, F.R.; Hsu, S.-T.D.; Morrison, A.J.; Smith, M.D. A nonpeptidic reverse turn that promotes parallel sheet structure stabilized by C–H···O hydrogen bonds in a cyclopropane γ-peptide. Angew. Chem. Int. Ed. 2008, 47, 7099–7102. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, Y.; Mereiter, K.; Jaeger, C.; Brecker, L.; Kosma, P.; Rosenau, T.; French, A. van der waals versus hydrogen-bonding forces in a crystalline analog of cellotetraose: Cyclohexyl 4'-O-cyclohexyl β-d-cellobioside cylohexane solvate. J. Am. Chem. Soc. 2008, 130, 16678–16690. [Google Scholar] [CrossRef] [PubMed]
- Grunenberg, J. Direct assessment of interresidue forces in watson-crick base pairs using theoretical compliance constants. J. Am. Chem. Soc. 2004, 126, 16310–16311. [Google Scholar] [CrossRef] [PubMed]
- Brovarets’, O.O.; Yurenko, Y.P.; Hovorun, D.M. Intermolecular CH···O/N H-Bonds in the biologically important pairs of natural nucleobases: A thorough quantum-chemical study. J. Biomol. Struct. Dyn. 2013, 32, 993–1022. [Google Scholar] [CrossRef] [PubMed]
- Brovarets’, O.O.; Yurenko, Y.P.; Hovorun, D.M. The significant role of the intermolecular CH..O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: A comprehensive theoretical investigation. J. Biomol. Struct. Dyn. 2014, 33, 1624–1652. [Google Scholar] [CrossRef] [PubMed]
- Yurenko, Y.P.; Zhurakivsky, R.O.; Samijlenko, S.P.; Hovorun, D.M. Intramolecular CH…O hydrogen bonds in the Ai and Bi DNA-like conformers of canonical nucleosides and their watson-crick pairs. Quantum chemical and aim analysis. J. Biomol. Struct. Dyn. 2011, 29, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. Contributions of NH···O and CH···O H-Bonds to the stability of β-sheets in proteins. J. Phys. Chem. B 2006, 110, 18670–18679. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, U.; Scheiner, S. First steps in growth of a polypeptide toward β-sheet structure. J. Phys. Chem. B 2013, 117, 11575–11583. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, S.; Dirk, L.M.A.; Yesselman, J.D.; Nimtz, J.S.; Adhikari, U.; Mehl, R.A.; Scheiner, S.; Houtz, R.L.; Al-Hashimi, H.M.; Trievel, R.C. Conservation and functional Importance of carbon-oxygen hydrogen bonding in adomet-dependent methyltransferases. J. Am. Chem. Soc. 2013, 135, 15536–15548. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, S.; Adhikari, U.; Dirk, L.M.A.; Del Rizzo, P.A.; Mehl, R.A.; Houtz, R.L.; Al-Hashimi, H.M.; Scheiner, S.; Trievel, R.C. Manipulating unconventional CH-based hydrogen bonding in a methyltransferase via noncanonical amino acid mutagenesis. ACS Chem. Biol. 2014, 9, 1692–1697. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.J.A.; Stratmann, R.E.; Burant, J.C.; et al. Gaussian03; D.01; Gaussian, Inc.: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Bader, R.F.W. Atoms in Molecules, A Quantum Theory; Clarendon Press: Oxford, UK, 1990; Volume 22, p. 438. [Google Scholar]
- Carroll, M.T.; Bader, R.F.W. An analysis of the hydrogen bond in base-HF complexes using the theory of atoms in molecules. Mol. Phys. 1988, 65, 695–722. [Google Scholar] [CrossRef]
- Smith, M.D.; Oxford University, Oxford, UK. Personal Communication, 2013.
- Reed, A.E.; Weinhold, F. Natural bond orbital analysis of near hartree-fock water dimer. J. Chem. Phys. 1983, 78, 4066–4073. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinhold, F.; Curtiss, L.A.; Pochatko, D.J. Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO and CO2 with HF, H2O, and NH3. J. Chem. Phys. 1986, 84, 5687–5705. [Google Scholar] [CrossRef]
- Guo, H.; Gorin, A.; Guo, H. A peptide-linkage deletion procedure for estimate of energetic contributions of individual peptide groups in a complex environment: Application to parallel β-sheets. Interdiscip. Sci. Comput. Life Sci. 2009, 1, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Beahm, R.F.; Guo, H. Stabilization and destabilization of the Cδ–H···O=C hydrogen bonds involving proline residues in helices. J. Phys. Chem. B 2004, 108, 18065–18072. [Google Scholar] [CrossRef]
- Latajka, Z.; Scheiner, S. Primary and secondary basis set superposition error at the SCF and MP2 Levels: H3N--Li+ and H2O--Li+. J. Chem. Phys. 1987, 87, 1194–1204. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Nepal, B.; Scheiner, S. Angular dependence of hydrogen bond energy in neutral and charged systems containing CH and NH proton donors. Chem. Phys. Lett. 2015, 630, 6–11. [Google Scholar] [CrossRef]
- Scheiner, S. Weak H-Bonds. Comparisons of CH···O to NH···O in proteins and PH···N to direct P...N interactions. Phys. Chem. Chem. Phys. 2011, 13, 13860–13872. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. The strength with which a peptide group can form a hydrogen bond varies with the internal conformation of the polypeptide chain. J. Phys. Chem. B 2007, 111, 11312–11317. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Kar, T.; Scheiner, S. Fundamental properties of the CH···O interaction: Is it a true hydrogen bond? J. Am. Chem. Soc. 1999, 121, 9411–9422. [Google Scholar] [CrossRef]
- Scheiner, S.; Kar, T.; Gu, Y. Strength of the CαH···O hydrogen bond of amino acid residues. J. Biol. Chem. 2001, 276, 9832–9837. [Google Scholar] [CrossRef] [PubMed]
- Kar, T.; Scheiner, S. Comparison of cooperativity in CH···O and OH···O hydrogen bonds. J. Phys. Chem. A 2004, 108, 9161–9168. [Google Scholar] [CrossRef]
- Adhikari, U.; Scheiner, S. Preferred configurations of peptide-peptide interactions. J. Phys. Chem. A 2013, 117, 489–496. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheiner, S. Dissection of the Factors Affecting Formation of a CH∙∙∙O H-Bond. A Case Study. Crystals 2015, 5, 327-345. https://doi.org/10.3390/cryst5030327
Scheiner S. Dissection of the Factors Affecting Formation of a CH∙∙∙O H-Bond. A Case Study. Crystals. 2015; 5(3):327-345. https://doi.org/10.3390/cryst5030327
Chicago/Turabian StyleScheiner, Steve. 2015. "Dissection of the Factors Affecting Formation of a CH∙∙∙O H-Bond. A Case Study" Crystals 5, no. 3: 327-345. https://doi.org/10.3390/cryst5030327
APA StyleScheiner, S. (2015). Dissection of the Factors Affecting Formation of a CH∙∙∙O H-Bond. A Case Study. Crystals, 5(3), 327-345. https://doi.org/10.3390/cryst5030327