Time-Dependent Evolution of Nanostructure Formation on CdI2 Crystal Surfaces
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lushchik, A.; Lushchik, C.; Vasil’chenko, E.; Popov, A.I. Radiation Creation of Cation Defects in Alkali Halide Crystals: Review and Today’s Concept. Low Temp. Phys. 2018, 44, 269–277. [Google Scholar] [CrossRef]
- Vaněček, V.; Děcká, K.; Mihóková, E.; Čuba, V.; Král, R.; Nikl, M. Advanced Halide Scintillators: From the Bulk to Nano. Adv. Photon. Res. 2022, 3, 2200011. [Google Scholar] [CrossRef]
- Chen, H. Scintillation Mechanisms in Inorganic Scintillators: An Excitonic and Alkali Halides Focused Review. In Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXIV; SPIE: Bellingham, WA, USA, 2022; Volume 12241, pp. 12–30. [Google Scholar]
- Racu, A.V.; Ristić, Z.; Ćirić, A.; Đorđević, D.; Bușe, G.; Poienar, M.; Gutmann, M.J.; Ivashko, O.; Ștef, M.; Vizman, D.; et al. Analysis of Site Symmetries of Er3+-Doped CaF2 and BaF2 Crystals by High-Resolution Photoluminescence Spectroscopy. Opt. Mater. 2023, 136, 113337. [Google Scholar] [CrossRef]
- Levkovets, S.I.; Khyzhun, O.Y.; Myronchuk, G.L.; Fochuk, P.M.; Piasecki, M.; Kityk, I.V.; Fedorchuk, A.O.; Levkovets, V.I.; Parasyuk, L.V. Synthesis, Electronic Structure and Optical Properties of PbBr1.2I0.8. J. Electron Spectrosc. Relat. Phenom. 2017, 218, 13–20. [Google Scholar] [CrossRef]
- Nicoara, I.; Ștef, M.; Vizman, D.; Negut, C.D. Gamma-Rays Induced Color Centers in Pb2+-Doped CaF2 Crystals. Radiat. Phys. Chem. 2018, 153, 70–78. [Google Scholar] [CrossRef]
- Popov, A.I.; Elsts, E.; Kotomin, E.A.; Moskina, A.; Karipbayev, Z.T.; Makarenko, I.; Pazylbek, S.; Kuzovkov, V.K. Thermal Annealing of Radiation Defects in MgF2 Single Crystals Induced by Neutrons at Low Temperatures. Nucl. Instrum. Methods Phys. Res. B 2020, 480, 16–21. [Google Scholar] [CrossRef]
- Shunkeyev, K.; Tilep, A.; Sagimbayeva, S.; Lushchik, A.; Ubaev, Z.; Myasnikova, L.; Zhanturina, N.; Aimaganbetova, Z. The Enhancement of Exciton-Like Luminescence in KCl Single Crystals under Local and Uniaxial Elastic Lattice Deformation. Nucl. Instrum. Methods Phys. Res. B 2022, 528, 20–26. [Google Scholar] [CrossRef]
- Lushchik, C.; Kolk, J.; Lushchik, A.; Lushchik, N.; Taiirov, M.; Vasilchenko, E. Decay of excitons into long-lived F, H and α, I pairs in KCl. Phys. Status Solidi B 1982, 114, 103–111. [Google Scholar] [CrossRef]
- Shunkeyev, K.; Aimaganbetova, Z.; Myasnikova, L.; Maratova, A.; Ubaev, Z. Mechanisms of Radiation Defect Formation in KCl Crystals under the Influence of Local and Plastic Deformation. Nucl. Instrum. Methods Phys. Res. B 2021, 509, 7–11. [Google Scholar] [CrossRef]
- Myasnikova, L.N.; Istlyaup, A.S.; Sergeyev, D.M.; Shunkeyev, K.S. Computer Simulations of the Band Structure and Density of States of the Linear Chains of NaCl Ions. Latv. J. Phys. Tech. Sci. 2019, 56, 49–56. [Google Scholar] [CrossRef]
- Tariwong, Y.; Kim, H.J.; Quang, N.D.; Khan, A.; Daniel, D.J.; Limsuwan, P.; Wantana, N.; Pakawanit, P.; Vittayakorn, N.; Intachai, N.; et al. Ca Co-Doped CsI(Tl) Crystal Scintillator for γ- and X-Ray Detecting Applications. Radiat. Phys. Chem. 2025, 226, 112241. [Google Scholar] [CrossRef]
- Romanova, M.; Chertopalov, S.; Dekhtyar, Y.; Fekete, L.; Lančok, J.; Novotný, M.; Pokorný, P.; Popov, A.I.; Sorokins, H.; Vilken, A. Charge Trapping in SiO2 Substrate during Electron Beam Deposition of CaF2 Thin Films of Different Thicknesses. Opt. Mater. X 2025, 25, 100400. [Google Scholar] [CrossRef]
- Ubukata, T.; Otake, S.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Scintillation Properties of SrCl2:Eu Transparent Ceramics Fabricated by Spark Plasma Sintering Method. J. Lumin. 2025, 278, 121021. [Google Scholar] [CrossRef]
- Kalniņš, A.; Pļaviņa, I.; Popov, A.I.; Tāle, A. Determination of the effective absorption cross-section of F-centres in KBr–In by photostimulated luminescence. Phys. Status Solidi B 1990, 161, 85–89. [Google Scholar] [CrossRef]
- Zheng, B.; Deng, L.; Ma, H.; Wang, J.; Yao, Y.; Qi, D.; Shen, Y.; Sun, Z.; Zhang, S. Defect-related luminescence in BaF2 nanoparticles for plant cell imaging. Appl. Phys. Lett. 2025, 126, 173701. [Google Scholar] [CrossRef]
- Popov, A.I. Manifestation of H-Centre Aggregation in the Exciton-Induced Thermostimulated Luminescence of KBr:In and KBr:Tl Crystals. Phys. Status Solidi B 1992, 169, K47–K51. [Google Scholar] [CrossRef]
- Rogulis, U.; Spaeth, J.-M.; Elsts, E.; Dolgopolova, A. Tl-related radiation defects in CsI:Tl. Radiat. Meas. 2004, 38, 389–392. [Google Scholar] [CrossRef]
- Ronda, C.R.; Zwaal, E.; Folkersma, H.F.; Lenselink, A.; Haas, C. Absorption and luminescence of photochromic CdI2:CuI. J. Solid State Chem. 1988, 72, 80–91. [Google Scholar] [CrossRef]
- Xu, Z.; Rui, Q.; Geng, Y.; Li, J.; Wang, Q.; Wang, X. Pressure-induced decomposition of cadmium iodide. EPL (Europhys. Lett.) 2022, 140, 16003. [Google Scholar] [CrossRef]
- Miah, M.I. Size- and temperature-dependent second-order optical effects in copper-doped cadmium iodide nanocrystals. J. Appl. Phys. 2008, 104, 064313. [Google Scholar] [CrossRef]
- Wang, W.; Qiao, J.; Wang, L.; Duan, L.; Zhang, D.; Yang, W.; Qiu, Y. Synthesis, structures, and optical properties of cadmium iodide/phenethylamine hybrid materials with controlled structures and emissions. Inorg. Chem. 2007, 46, 10252–10260. [Google Scholar] [CrossRef]
- Yue, L.; Jin, W.; Mao, A.J.; Kuang, X. Single-layer MX2 (M = Zn, Cd; X = Cl, I): Auxetic semiconductors with strain-tunable optoelectronic properties. J. Phys. Chem. C 2021, 125, 12983–12990. [Google Scholar] [CrossRef]
- Tao, L.; Huang, L. Computational design of enhanced photocatalytic activity of two-dimensional cadmium iodide. RSC Adv. 2017, 7, 53653–53657. [Google Scholar] [CrossRef]
- Tubbs, M.R. Polytypism and spiral growth in cadmium iodide. Acta Cryst. B 1971, 27, 857–859. [Google Scholar] [CrossRef]
- Aldwayyan, A.S.; Al-Jekhedab, F.M.; Al-Noaimi, M.; Hammouti, B.; Hadda, T.B.; Suleiman, M.; Warad, I. Synthesis and characterization of CdO nanoparticles starting from organometallic dmphen-CdI2 complex. Int. J. Electrochem. Sci. 2013, 8, 10506–10514. [Google Scholar] [CrossRef]
- Bolesta, I.; Velgosh, S.; Datsiuk, Y.; Karbovnyk, I.; Lesivtsiv, V.; Kulay, T.; Popov, A.I.; Bellucci, S.; Cestelli Guidi, M.; Marcelli, A.; et al. Optical, infrared and electron-microscopy studies of (Cdi)n metallic clusters in layered CdI2 crystals. Radiat. Meas. 2007, 42, 851–854. [Google Scholar] [CrossRef]
- Bolesta, I.M.; Rovetskyj, I.N.; Partyka, M.V.; Karbovnyk, I.D.; Kulyk, B.Y. Formation of nanostructures on the VdW-surface of CdI2 crystals. Ukr. J. Phys. 2013, 58, 490. [Google Scholar] [CrossRef]
- Miah, M.I. Stimulated photoluminescence and optical limiting in CdI2. Opt. Mater. 2002, 20, 279–282. [Google Scholar] [CrossRef]
- Miah, M.I. One-, two-, and three-photon processes in CdI2 crystal. Opt. Mater. 2004, 25, 353–357. [Google Scholar] [CrossRef]
- Miah, M.I. Multiphoton excitation and thermal activation in indirect bandgap semiconductors. Opt. Quantum Electron. 2018, 50, 355. [Google Scholar] [CrossRef]
- Novosad, S.S.; Matviishin, I.M.; Novosad, I.S.; Novosad, O.S. Spectral and kinetic characteristics of CdI2 and CdI2:Pb scintillators. J. Appl. Spectrosc. 2008, 75, 826–831. [Google Scholar] [CrossRef]
- Bukivskii, A.P.; Gnatenko, Y.P.; Piryatinski, Y.P.; Fesych, I.V.; Lendel, V.V.; Tkach, V.M.; Bukivskij, P.M. Nature of radiative recombination processes in layered heterogeneous PbCdI2 thick films: Promising scintillator materials. Adv. Condens. Matter Phys. 2018, 2018, 2762369. [Google Scholar] [CrossRef]
- Salakhutdinov, G.K.; Efanov, D.V. Nonlinear effects in scintillation detectors. Instrum. Exp. Tech. 2015, 58, 345–349. [Google Scholar] [CrossRef]
- Chen, C. The electronic and optical properties of Cu-doped CdI2. Optik 2013, 124, 3230–3234. [Google Scholar] [CrossRef]
- Rybak, O.V.; Chekaylo, M.V.; Pokladok, N.T. Vapor phase growth and properties of mixed layered Pb1−xCdxI2 semiconductors. Phys. Chem. Solid State 2022, 23, 311–316. [Google Scholar] [CrossRef]
- Novosad, S.S.; Novosad, I.S.; Goncharuk, V.E. Recombination processes in europium-doped cadmium iodide crystals. J. Appl. Spectrosc. 2009, 76, 334–340. [Google Scholar] [CrossRef]
- Novosad, I.; Kalivoshka, B.; Novosad, S.; Vas’kiv, A. Effect of preparation conditions and impurities on the spectral characteristics of cadmium iodide. In Proceedings of the XIth International Scientific and Practical Conference on Electronics and Information Technologies (ELIT), Lviv, Ukraine, 16–18 September 2019; pp. 291–294. [Google Scholar] [CrossRef]
- Cummings, T.; Marín, C.; Ostrogorsky, A.G.; Burger, A.; Bliss, M. Tetragonal red and yellow HgI2-CdI2 crystals for X- and γ-ray solid-state detectors directionally solidified under argon pressure of 20 atm. J. Cryst. Growth 2006, 297, 334–338. [Google Scholar] [CrossRef]
- Furyer, M.S.; Skubenko, P.A.; Bukivskij, P.M.; Tarakhan, L.M.; Chesnokov, E.D.; Vertegel, I.G.; Ovcharenko, A.I.; Ivanova, L.S.; Gamernyk, R.V.; Gnatenko, Y.P. Study of the photoluminescence and photoelectric properties of Pb1− xCdxI2 alloys. J. Appl. Phys. 2010, 108, 103711. [Google Scholar] [CrossRef]
- Bukivskii, A.P.; Gnatenko, Y.P.; Piryatinskii, Y.P.; Gamernyk, R.V. Nature of radiative recombination processes in layered semiconductor PbCdI2 nanostructural scintillation material. J. Lumin. 2017, 185, 83–91. [Google Scholar] [CrossRef]
- Momin, M.A.; Islam, M.A.; Nesa, M.; Sharmin, M.; Rahman, M.J.; Bhuiyan, A.H. Effect of M (Ni, Cu, Zn) Doping on the Structural, Electronic, Optical, and Thermal Properties of CdI2: DFT-Based Theoretical Studies. AIP Adv. 2021, 11, 055012. [Google Scholar] [CrossRef]
- Karbovnyk, I.; Bolesta, I.; Rovetskyi, I.; Lesivtsiv, V.; Shmygelsky, Y.; Velgosh, S.; Popov, A.I. Long-Term Evolution of Luminescent Properties in CdI2 Crystals. Low Temp. Phys. 2016, 42, 594–596. [Google Scholar] [CrossRef]
- Karbovnyk, I.; Bolesta, I.; Rovetskii, I.; Velgosh, S.; Klym, H. Studies of CdI2–Bi3+ Microstructures with Optical Methods, Atomic Force Microscopy and Positron Annihilation Spectroscopy. Mater. Sci. Pol. 2014, 32, 391–395. [Google Scholar] [CrossRef]
- Bolesta, I.M.; Rovetskii, I.N.; Karbovnik, I.D.; Rykhlyuk, S.V.; Partyka, M.V.; Gloskovskaya, N.V. Formation and Optical Properties of CdI2 Nanostructures. J. Appl. Spectrosc. 2015, 82, 84–90. [Google Scholar] [CrossRef]
- Ai, R.; Guan, X.; Li, J.; Yao, K.; Chen, P.; Zhang, Z.; Duan, X. Growth of Single-Crystalline Cadmium Iodide Nanoplates, CdI2/MoS2 (WS2, WSe2) van der Waals Heterostructures, and Patterned Arrays. ACS Nano 2017, 11, 3413–3419. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, S.; Bolesta, I.; Guidi, M.C.; Karbovnyk, I.; Lesivtsiv, V.; Micciulla, F.; Pastore, R.; Popov, A.I.; Velgosh, S. Cadmium Clusters in CdI2 Layered Crystals: The Influence on the Optical Properties. J. Phys. Condens. Matter 2007, 19, 395015. [Google Scholar] [CrossRef]
- Bellucci, S.; Bolesta, I.; Karbovnyk, I.; Hrytskiv, R.; Fafilek, G.; Popov, A.I. Microstructure of Ag2BI4 (B = Ag, Cd) Superionics Studied by SEM, Impedance Spectroscopy and Fractal Dimension Analysis. J. Phys. Condens. Matter 2008, 20, 474211. [Google Scholar] [CrossRef]
- Ueno, T.; Yamamoto, H.; Saiki, K.; Koma, A. Van der Waals Epitaxy of Metal Dihalide. Appl. Surf. Sci. 1997, 113, 33–37. [Google Scholar] [CrossRef]
- Kumari, S.; Suthar, D.; Himanshu; Kumari, N.; Dhaka, M.S. Understanding Grain Growth Mechanism in Vacuum Evaporated CdTe Thin Films by Different Halide Treatments: An Evolution of Ion Size Impact on Physical Properties for Solar Cell Applications. Comments Inorg. Chem. 2023, 43, 429–464. [Google Scholar] [CrossRef]
- Roccanova, R.; Ming, W.; Whiteside, V.R.; McGuire, M.A.; Sellers, I.R.; Du, M.H.; Saparov, B. Synthesis, Crystal and Electronic Structures, and Optical Properties of (CH3NH3)2CdX4 (X = Cl, Br, I). Inorg. Chem. 2017, 56, 13878–13888. [Google Scholar] [CrossRef]
- Suchikova, Y.; Nazarovets, S.; Popov, A.I. Ga2O3 Solar-Blind Photodetectors: From Civilian Applications to Missile Detection and Research Agenda. Opt. Mater. 2024, 142, 116397. [Google Scholar] [CrossRef]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Popova, E.; Moskina, A.; Popov, A.I. Characterization of CdxTeyOz/CdS/ZnO Heterostructures Synthesized by the SILAR Method. Coatings 2023, 13, 639. [Google Scholar] [CrossRef]
- Gal’chinskii, A.V.; Gloskovskaya, N.V.; Yaritskaya, L.I. Carrier Trapping and Delocalization in PbI2-Containing CdI2 Crystals. Inorg. Mater. 2012, 48, 423–427. [Google Scholar] [CrossRef]
- Bolesta, I.M.; Rovetskii, I.N.; Velgosh, S.R.; Rykhlyuk, S.V.; Karbovnyk, I.D.; Gloskovskaya, N.V. Morphology and Optical Properties of Nanostructures Formed in Non-Stoichiometric CdI2 Crystals. Ukr. J. Phys. 2018, 63, 816. [Google Scholar] [CrossRef]
- Bolesta, I.M.; Gloskovskaya, N.V.; Panasyuk, M.R.; Rovetskii, I.N.; Yaritskaya, L.I. Extrinsic Luminescence Centers in CdI2 Crystals Doped with PbI2 (10−4 to 1 mol%). Inorg. Mater. 2013, 49, 214–218. [Google Scholar] [CrossRef]
- Benhaliliba, M.; Benouis, C.E.; Tiburcio-Silver, A.; Yakuphanoglu, F.; Avila-Garcia, A.; Tavira, A.; Mouffak, Z. Luminescence and Physical Properties of Copper Doped CdO Derived Nanostructures. J. Lumin. 2012, 132, 2653–2658. [Google Scholar] [CrossRef]
- Sahraei, R.; Mihandoost, A.; Nabiyouni, G.; Daneshfar, A.; Roushani, M.; Majles Ara, M.H. Room Temperature Synthesis and Characterization of Ultralong Cd(OH)2 Nanowires: A Simple and Template-Free Chemical Route. Appl. Phys. A 2012, 109, 471–475. [Google Scholar] [CrossRef]
- Matsumoto, H.; Nakagawa, H. Relaxed Excitonic States in CdI2 Crystals. J. Lumin. 1979, 18, 19–22. [Google Scholar] [CrossRef]
- Kawabata, S.; Nakagawa, H. Life-Time Resolved Emission Spectra in CdI2 Crystals. J. Lumin. 2007, 126, 48–52. [Google Scholar] [CrossRef]
- Fukui, K.; Asakura, K.; Niimi, K.I.; Ishizue, I.; Nakagawa, H. Absorption and Luminescence Spectra of Amorphous CdI2 Thin Films. J. Electron Spectrosc. Relat. Phenom. 1999, 101, 299–302. [Google Scholar] [CrossRef]
- Zhunusbekov, A.M.; Strelkova, A.V.; Karipbayev, Z.T.; Kumarbekov, K.K.; Akilbekov, A.; Kassymkhanova, R.N.; Kassymzhanov, M.T.; Smortsova, Y.; Popov, A.I. Luminescence Investigation of BaMgF4 Ceramics under VUV Synchrotron Excitation. Crystals 2025, 15, 127. [Google Scholar] [CrossRef]
- Nagorny, S. Novel Cs2HfCl6 Crystal Scintillator: Recent Progress and Perspectives. Physics 2021, 3, 320–351. [Google Scholar] [CrossRef]
- Buryi, M.; Kral, R.; Babin, V.; Paterek, J.; Vanecek, V.; Veverka, P.; Kohoutkova, M.; Laguta, V.; Fasoli, M.; Villa, I.; et al. Trapping and Recombination Centers in Cesium Hafnium Chloride Single Crystals: EPR and TSL Study. J. Phys. Chem. C 2019, 123, 19402–19411. [Google Scholar] [CrossRef]
- Maji, S.B.; Vanetsev, A.; Mändar, H.; Nagirnyi, V.; Chernenko, K.; Kirm, M. Investigation of Luminescence Properties of Hydrothermally Synthesized Pr3+-Doped BaLuF5 Nanoparticles under Excitation by VUV Photons. Opt. Mater. 2024, 154, 115781. [Google Scholar] [CrossRef]
- Saaring, J.; Vanetsev, A.; Chernenko, K.; Feldbach, E.; Kudryavtseva, I.; Mändar, H.; Pikker, S.; Pärna, R.; Nagirnyi, V.; Omelkov, S.; et al. Time-Resolved Luminescence Spectroscopy of Ultrafast Emissions in BaGeF6. J. Lumin. 2022, 244, 118729. [Google Scholar] [CrossRef]
- Saaring, J.; Vanetsev, A.; Chernenko, K.; Feldbach, E.; Kudryavtseva, I.; Mändar, H.; Pärna, R.; Nagirnyi, V.; Omelkov, S.; Romet, I.; et al. Relaxation of Electronic Excitations in K2GeF6 Studied by Means of Time-Resolved Luminescence Spectroscopy under VUV and Pulsed Electron Beam Excitation. J. Alloys Compd. 2021, 883, 160916. [Google Scholar] [CrossRef]
- Cirulis, J.; Antuzevics, A.; Fedotovs, A.; Rogulis, U.; Zvejnieks, G. Local Structure of an Oxygen Impurity and Fluorine Vacancy Complex in LiYF4. Materialia 2023, 30, 101848. [Google Scholar] [CrossRef]
- Antuzevics, A.; Fedotovs, A.; Berzins, D.; Rogulis, U.; Auzins, K.; Zolotarjovs, A.; Baldochi, S.L. Recombination Luminescence of X-Ray Induced Paramagnetic Defects in BaY2F8. J. Lumin. 2020, 223, 117216. [Google Scholar] [CrossRef]
- Li, X.; Hu, C.; Guo, L.; Ye, J.; Zhang, Y.; Xu, J.; Wu, J.; Liu, Q.; Shi, Y.; Chen, J.; et al. Scintillation properties and slow component suppression mechanism of BaF2 transparent ceramics. J. Am. Ceram. Soc. 2025, 108, e20469. [Google Scholar] [CrossRef]
- Ubukata, T.; Otake, S.; Kimura, H.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Effect of Eu-doping on optical and scintillation properties of CaCl2 transparent ceramics. J. Mater. Sci. Mater. Electron. 2025, 36, 2240. [Google Scholar] [CrossRef]
- Okazaki, K.; Koshimizu, M.; Koba, Y.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Effects of linear energy transfer on thermoluminescence properties of Eu-doped CaF2 ceramics. Nucl. Instrum. Methods Phys. Res. B 2025, 566, 165785. [Google Scholar] [CrossRef]
- Wauke, T.; Kawano, N.; Kato, T.; Takebuchi, Y.; Fukushima, H.; Okada, G.; Yanagida, T. Dosimetric properties of Eu-doped Ca2BO3Cl. Nucl. Instrum. Methods Phys. Res. B 2024, 548, 165227. [Google Scholar] [CrossRef]
- Stef, M.; Buse, G.; Gutmann, M.; Poienar, M. Structural and optical properties of 5 mol% ErF3-doped fluoride crystals. Phys. Scr. 2025, 100, 105902. [Google Scholar] [CrossRef]
- Ćirić, A.; Stef, M.; Buse, G.; Periša, J.; Ristić, Z.; Gavrilović, T.; Dramićanin, M.D. Principal component analysis luminescence thermometry of Ce3+: Case study of BaF2:Ce3+ single crystals. J. Appl. Cryst. 2025, 58, 1659–1664. [Google Scholar] [CrossRef]
- Stef, M.; Schornig, C.; Buse, G. Optical and Dielectric Properties of BaF2:(Er,Yb) Co-Doped Crystal. Materials 2025, 18, 1915. [Google Scholar] [CrossRef] [PubMed]
- Schornig, C.; Stef, M.; Buse, G.; Poienar, M.; Veber, P.; Vizman, D. Spectroscopic Properties of TmF3-Doped CaF2 Crystals. Materials 2024, 17, 4965. [Google Scholar] [CrossRef] [PubMed]






| t, Hours | Characteristics of Clusters | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Number | Cluster Density Per μm2 | Minimum Radius, nm | Maximum Radius, nm | Average Radius, nm | Minimum Height, nm | Maximum Height, nm | Average Height, nm | Average Distance to Nearest Neighbor, nm | |
| 8 | 20 | 0.33 | 38 | 238 | 92 | 12 | 34 | 23 | 922 |
| 24 | 37 | 0.62 | 31 | 253 | 81 | 4 | 45 | 20 | 721 |
| 32 | 82 | 1.37 | 31 | 275 | 79 | 4 | 57 | 18 | 474 |
| 48 | 81 | 1.35 | 31 | 240 | 66 | 9 | 64 | 23 | 507 |
| 54 | 109 | 1.82 | 31 | 241 | 58 | 8 | 62 | 21 | 434 |
| 120 | 143 | 2.38 | 31 | 234 | 51 | 8 | 78 | 23 | 342 |
| 144 | 175 | 2.92 | 31 | 236 | 49 | 6 | 77 | 20 | 309 |
| 168 | 344 | 5.73 | 31 | 258 | 48 | 6 | 82 | 18 | 242 |
| No | t, Hours | Characteristics of the Nanocluster | |||
|---|---|---|---|---|---|
| Radius, nm | Area, nm2 | Height, nm | Volume, nm3 | ||
| 1 | 1 | 66 | 353 | 15 | 1765 |
| 2 | 5 | 66 | 351 | 23 | 2691 |
| 3 | 8 | 73 | 429 | 29 | 4147 |
| 4 | 24 | 88 | 624 | 35 | 7280 |
| 5 | 29 | 110 | 976 | 34 | 11,061 |
| 6 | 32 | 117 | 1093 | 33 | 12,023 |
| 7 | 48 | 88 | 624 | 45 | 9360 |
| 8 | 54 | 82 | 546 | 47 | 8554 |
| 9 | 120 | 76 | 468 | 48 | 7488 |
| 10 | 144 | 82 | 546 | 48 | 8736 |
| 11 | 168 | 85 | 585 | 49 | 9555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rovetskii, I.; Klym, H.; Karbovnyk, I.; Konuhova, M.; Kongi, N.; Popov, A.I. Time-Dependent Evolution of Nanostructure Formation on CdI2 Crystal Surfaces. Crystals 2026, 16, 152. https://doi.org/10.3390/cryst16020152
Rovetskii I, Klym H, Karbovnyk I, Konuhova M, Kongi N, Popov AI. Time-Dependent Evolution of Nanostructure Formation on CdI2 Crystal Surfaces. Crystals. 2026; 16(2):152. https://doi.org/10.3390/cryst16020152
Chicago/Turabian StyleRovetskii, Ivan, Halyna Klym, Ivan Karbovnyk, Marina Konuhova, Nadezda Kongi, and Anatoli I. Popov. 2026. "Time-Dependent Evolution of Nanostructure Formation on CdI2 Crystal Surfaces" Crystals 16, no. 2: 152. https://doi.org/10.3390/cryst16020152
APA StyleRovetskii, I., Klym, H., Karbovnyk, I., Konuhova, M., Kongi, N., & Popov, A. I. (2026). Time-Dependent Evolution of Nanostructure Formation on CdI2 Crystal Surfaces. Crystals, 16(2), 152. https://doi.org/10.3390/cryst16020152

