Impact of High Fe Doping on Structure, Optical, and Magnetic Properties of Zinc Oxide Nanostructures Synthesized by Hydrothermal Route
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of ZnO and ZnO-Fe Nanostructures
2.2. Characterizations
3. Results
3.1. Morphology of ZnO and ZnO-Fe Nanocomposite
3.2. Structure and Vibrational Analysis
Williamson–Hall Plot
3.3. XPS Analysis
3.4. Optical Properties
3.5. Magnetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, S.; Kumar, V.; Tyagi, S.; Saxena, N.; Khan, Z.H.; Kumar, P. Room temperature ferromagnetism in metal oxides for spintronics: A comprehensive review. Opt. Quantum Electron. 2023, 55, 123. [Google Scholar]
- Chen, B.; Zeng, M.; Khoo, K.H.; Das, D.; Fong, X.; Fukami, S.; Li, S.; Zhao, W.; Parkin, S.; Piramanayagam, S.N.; et al. Spintronic devices for high-density memory and neuromorphic computing—A review. Mater. Today 2023, 70, 193–217. [Google Scholar]
- Salman, K.M.; Zikriya, M.; Renuka, C.G. Impact of modified spin coating variations on electrical resistivity and UV detector responsivity in Mg-doped ZnO thin films. Opt. Mater. 2025, 158, 116460. [Google Scholar] [CrossRef]
- Badawi, A.; Althobaiti, M.G.; Ali, E.E.; Alharthi, S.S.; Alharbi, A.N. A comparative study of the structural and optical properties of transition metals (M = Fe, Co, Mn, Ni) doped ZnO films deposited by spray-pyrolysis technique for optoelectronic applications. Opt. Mater. 2022, 124, 112055. [Google Scholar]
- Ciorga, M. Perspective on the spin field-effect transistor. J. Phys. D Appl. Phys. 2024, 58, 012001. [Google Scholar]
- Sundaram, G.A.; Muniyandi, G.r.; Ethiraj, J.; Parimelazhagan, V.; Kumar, A.S.K. Introduction and Advancements in Room-Temperature Ferromagnetic Metal Oxide Semiconductors for Enhanced Photocatalytic Performance. ChemEngineering 2024, 8, 36. [Google Scholar] [CrossRef]
- Panžić, I.; Bafti, A.; Radovanović-Perić, F.; Gašparić, D.; Shi, Z.; Borenstein, A.; Mandić, V. Advancements in Nanostructured Functional Constituent Materials for Gas Sensing Applications: A Comprehensive Review. Appl. Sci. 2025, 15, 2522. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.; Elsayed, I.A.; Fahmy, T. Substrate temperature and laser fluence effects on properties of ZnO thin films deposited by pulsed laser deposition. J. Mater. Sci. Mater. Electron. 2018, 29, 19942. [Google Scholar] [CrossRef]
- Zhao, G.; Gu, G.; Yang, S.; Peng, Y.; Li, X.; Kojima, K.M.; Lin, C.; Wang, X.; Ziman, T.; Uemura, Y.J.; et al. Doping Effects on Magnetic and Electronic Transport Properties in BaZn2As2. Crystals 2025, 15, 582. [Google Scholar] [CrossRef]
- Habib, A.K.M.; Rifat, K.M.R.; Kabir, M.E.; Noor Khan, J.; Nasim Rokon, S.M.; Rabbi, M.A. Improved photocatalytic activity of (Ni, Mn) co-doped ZnO nanoparticles prepared via green synthesis route using orange peel extract. Results Mater. 2024, 22, 100581. [Google Scholar]
- Luo, Z.; Rong, P.; Yang, Z.; Zhang, J.; Zou, X.; Yu, Q. Preparation and Application of Co-Doped Zinc Oxide: A Review. Molecules 2024, 29, 3373. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa Subbarao, P.; Aparna, Y.; Ramanaiah, M. Ni Doped ZnO Nanostructures: Synthesis, Characterization and It’s Sensing Behavior at Lower Concentration and High Temperature. ECS J. Solid State Sci. Technol. 2025, 14, 107001. [Google Scholar]
- Mahoura, L.N.; Choudharya, H.K.; Kumara, R.; Anupamab, A.V.; Sahooa, B. Structural, optical and Mössbauer spectroscopic investigations on the environment of Fe in Fe-doped ZnO (Zn1-xFexO) ceramics synthesized by solution combustion method. Ceram. Int. 2019, 45, 24625–24634. [Google Scholar]
- Gartner, M.; Chelu, M.; Szekeres, A.; Petrik, P. Towards Advanced Materials: Functional Perspectives of Co-Doped ZnO Thin Films. Micromachines 2025, 16, 1179. [Google Scholar] [CrossRef]
- Rosowska, J.; Kaszewski, J.; Witkowski, B.; Wachnicki, Ł.; Kuryliszyn-Kudelska, I.; Godlewski, M. The effect of iron content on properties of ZnO nanoparticles prepared by microwave hydrothermal method. Opt. Mater. 2020, 109, 110089. [Google Scholar] [CrossRef]
- Maibam, B.; Baruah, S.; Kumar, S. Photoluminescence and intrinsic ferromagnetism of Fe doped zinc oxide. SN Appl. Sci. 2020, 2, 1712. [Google Scholar] [CrossRef]
- Jenish, S.L.; Valanarasu, S.; Prakash, B.; Veerathangam, K.; Vinoth, S.; Al-Enizi, A.M.; Ubaidullah, M.; Reddy, V.R.M.; Karim, A. Improved optical and electrical properties of Fe doped ZnO nanostructures facilely deposited by low-cost SILAR method for photosensor applications. Surf. Interfaces 2022, 31, 102071. [Google Scholar] [CrossRef]
- Hiremath, M.V.; Momin, N.; Kangralkar, M.V.; Manjanna, J.; Hegde, B.G.; Byalollikar, D.G. Synthesis and characterization of Fe-doped ZnO films for enhanced NO2 gas-sensing applications. J. Korean Phys. Soc. 2024, 85, 772–782. [Google Scholar]
- Srinivasulu, T.; Saritha, K.; Reddy, K.T. Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Mod. Electron. Mater. 2017, 3, 76–85. [Google Scholar]
- Roy, S.; Ghosh, M.P.; Mukherjee, S. Introducing magnetic properties in Fe-doped ZnO nanoparticles. Appl. Phys. A 2021, 127, 451. [Google Scholar] [CrossRef]
- Fabbiyola, S.; John Kennedy, L.; Ratnaji, T.; Vijaya, J.; Aruldoss, U.; Bououdina, M. Effect of Fe-doping on the structural, optical and magnetic properties of ZnO nanostructures synthesized by co-precipitation method. Ceram. Int. 2016, 42, 1588–1596. [Google Scholar] [CrossRef]
- Musharaf, M.; Karamat, S.; Hassan, M.U.; Khalique, U.; Oral, A.; Behjat, A.B.; Akram, R.; Almohaimeed, Z. Solubility Enhancement of Fe in ZnO Nanoparticles Prepared by Co-Precipitation Method. J. Supercond. Nov. Magn. 2021, 34, 2633–2642. [Google Scholar] [CrossRef]
- Han, C.; Duan, L.; Zhao, X.; Hu, Z.; Niu, Y.; Geng, W. Effect of Fe doping on structural and optical properties of ZnO films and nanorods. J. Alloys Compd. 2019, 770, 854–863. [Google Scholar] [CrossRef]
- Saleh, R.; Prakoso, S.P.; Fishli, A. The influence of Fe doping on the structural, magnetic and optical properties of nanocrystalline ZnO particles. J. Magn. Magn Mater. 2012, 324, 665–670. [Google Scholar] [CrossRef]
- Goktas, A.; Mutlu, I.H.; Yamada, Y. Influence of Fe-doping on the structural, optical, and magnetic properties of ZnO thin films prepared by sol–gel method. Superlattices Microstruct. 2013, 57, 139–149. [Google Scholar] [CrossRef]
- Beltr’an, J.J.; Barreroa, C.A.; Punnoose, A. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 15284. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hoque, S.M.; Liba, S.I.; Choudhury, S. Effect of synthesis methods and a comparative study of structural and magnetic properties of zinc ferrite. AIP Adv. 2017, 7, 105321. [Google Scholar] [CrossRef]
- Hejazi, A.S.; Al-Hunaiti, A.H.; Bsoul, I.; Mohaidat, Q.; Mahmood, S.H. Optimizing the synthesis of ZnFe2O4 through chemical and physical methods: Effects of the synthesis route on the phase purity, inversion, and magnetic properties of spinel zinc ferrite. Phys. Scr. 2024, 99, 065029. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.M.; Alshehri, S.M.; Alotibi, S.; Alyami, M.; Abdelhameed, D. Hydrothermal Synthesis of ZnO Nanoflowers: Exploring the Relationship between Morphology, Defects, and Photocatalytic Activity. Crystals 2024, 14, 892. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Z.; Zhang, L.; Wang, X.; Yang, H.; Jiang, J. Optical and Magnetic Properties of Fe Doped ZnO Nanoparticles Obtained by Hydrothermal Synthesis. J. Nanomater. 2014, 2014, 792102. [Google Scholar] [CrossRef]
- Qiaoping, L.; Xin, L.; Yanning, Y.; Fuchun, Z.; Qi, Z. Hydrothermal synthesis and optical properties of Fe doped ZnO nanorods. Ferroelectrics 2020, 564, 59–69. [Google Scholar] [CrossRef]
- Bai, S.; Guo, T.; Zhao, Y.; Sun, J.; Li, D.; Chen, A.; Liu, C.C. Sensing performance and mechanism of Fe-doped ZnO micro flowers. Sens. Actuators B Chem. 2014, 195, 657–666. [Google Scholar] [CrossRef]
- Chey, C.O.; Masood, A.; Riazanova, A.; Liu, X.; Rao, K.V.; Nur, O.; Willander, M. Synthesis of Fe-Doped ZnO Nanorods by Rapid Mixing Hydrothermal Method and Its Application for High Performance UV Photodetector. J. Nanomater. 2014, 2014, 222. [Google Scholar] [CrossRef]
- John, R.A.B.; Kumar, A.R.; Shruthi, J.; Reddy, M.V.R. FexZn1−xO as room temperature dual sensor for formaldehyde and ammonia gas detection. Inorg. Chem. Commun. 2022, 141, 109506. [Google Scholar] [CrossRef]
- Imboon, T.; Sugio, K.; Khumphon, J.; Sridawong, L.; Gowri, V.M.; Yamada, K.; Shima, M.; Thongmee, S. Synergistic Effects of Fe-Doped ZnO and Graphene Oxide for Enhanced Photocatalytic Performance and Tunable Magnetic Properties. ACS Omega 2025, 10, 34571−34587. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.M.; Azab, A.A. Plasmonic Rutile TiO2/Ag Nanocomposites Tailored via Nonthermal-Plasma-Assisted Synthesis: Enhanced Spectroscopic and Optical Properties with Tuned Electrical Behavior. J. Compos. Sci. 2025, 9, 156. [Google Scholar] [CrossRef]
- Abdel-Fattah, E. Plasmonic ZnO-Au Nanocomposites: A Synergistic Approach to Enhanced Photocatalytic Activity through Nonthermal Plasma-Assisted Synthesis. Crystals 2024, 14, 890. [Google Scholar]
- Alharthi, A.I.; Abdel-Fattah, E.; Hargreaves, J.S.J.; Alotaibi, M.A.; Ud Din, I.; Al-Shalwi, M.N. Influence of Zn and Ni dopants on the physicochemical and activity patterns of CoFe2O4 derived catalysts for hydrogen production by catalytic cracking of methane. J. Alloys Compd. 2023, 938, 168437. [Google Scholar] [CrossRef]
- Gao, Q.Q.; Yu, Q.X.; Chen, B.; Zhu, H. Influence of thermal treatment on tuning the ferromagnetism in Mn-doped ZnO film. J. Alloys Compd. 2014, 590, 446–452. [Google Scholar]
- Fischer, D.; Bloos, D.; Krajewska, A.; McNally, G.M.; Zagorac, D.; Schön, J.C. Raman Characterization of Dioxygen Species as Defects in Single-Crystal ZnO Including Their Pressure Dependence. Crystals 2025, 15, 574. [Google Scholar]
- Abdel Fattah, E.; Alotaibi, M.A.; Alharthi, A.I. Thermo-catalytic methane decomposition over unsupported Fe–Al and Co–Al catalysts for hydrogen and carbon nanostructures production. Int. J. Hydrogen Energy 2024, 64, 685–694. [Google Scholar] [CrossRef]
- Rajić, V.; Simatović, I.S.; Veselinović, L.; Čavor, J.B.; Novaković, M.; Popović, M.; Škapin, S.D.; Mojović, M.; Stojadinović, S.; Rac, V.; et al. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: Seeking an optimal stoichiometry. Phys. Chem. Chem. Phys. 2020, 22, 22078–22095. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Xia, Y.; Yang, L.; Xiang, J.; Zhao, Q.; Guo, S. Noble Metal Functionalized Metal Oxide Semiconductors for Enhanced Gas Sensing. Molecules 2025, 30, 4683. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.J. Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method. Cryst. Growth 2010, 312, 851. [Google Scholar] [CrossRef]
- Inamdar, D.Y.; Pathak, A.K.; Dubenko, I.; Ali, N.; Mahamuni, S. Room Temperature Ferromagnetism and Photoluminescence of Fe Doped ZnO Nanocrystals. J. Phys. Chem. C 2011, 115, 23671–23676. [Google Scholar] [CrossRef]
- Bylsma, R.B.; Becker, W.M.; Kossut, J.; Debska, U.; Yoder-Short, D. Dependence of energy gap on x and T in Zn1-xMnxSe: The role of exchange interaction. Phys. Rev. B 1986, 33, 8207. [Google Scholar] [CrossRef]
- Liao, Y.-T.; Li, C.-H.; Chen, J.-H.; Wei, W.L.; Liu, S.Y.; Liu, H.-L.; Lin, B.-H.; Chern, M.-Y.; Lo, F.-Y. Visible light photoresistance and response time of samarium doped zinc oxide thin films grown by pulsed laser deposition. Opt. Mater. 2025, 167, 117307. [Google Scholar] [CrossRef]
- Vanheusden, K.; Seager, C.H.; Warren, W.L.; Tallant, D.R.; Voigt, J.A. Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis. Appl. Phys. Lett. 1996, 68, 403. [Google Scholar] [CrossRef]
- Kumar, S.; Asokan, K.; Singh, R.K.; Chatterjee, S.; Kanjilal, D.; Ghosh, A.K. Structural and optical properties of ZnO and ZnO:Fe nanoparticles under dense electronic excitations. J. Appl. Phys. 2013, 114, 164321. [Google Scholar] [CrossRef]
- Galdámez-Martinez, A.; Santana, G.; Güell, F.; Martínez-Alanis, P.R.; Dutt, A. Photoluminescence of ZnO Nanowires: A Review. Nanomaterials 2020, 10, 857. [Google Scholar] [CrossRef]
- Chen, A.J.; Wu, X.M.; Sha, Z.D.; Zhuge, L.J.; Meng, Y.D. Structure and photoluminescence properties of Fe-doped ZnO thin films. J. Phys. D Appl. Phys. 2006, 39, 4762–4765. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Venkatesan, M.; Fitzgerald, C.B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 2005, 4, 173–179. [Google Scholar] [CrossRef] [PubMed]







| Sample | Crystal Size G (nm) | Strain ε (10−3) |
|---|---|---|
| Pure ZnO | 41.1 | 2.18 |
| Zn0.9 Fe0.1O | 43.2 | 1.59 |
| Zn0.8 Fe0.2O | 40.3 | 1.69 |
| Zn0.7 Fe0.3O | 39.1 | 1.52 |
| Zn0.6 Fe0.4O | 37.4 | 1.43 |
| Sample | Hc (Oe) | Mr (emu/g) | MHF (emu/g) | Mr/MHF |
|---|---|---|---|---|
| Pure ZnO | --- | ---- | ---- | ---- |
| Zn0.9 Fe0.1O | 165 | 1.1 × 10−3 | 0.05 × 10−2 | 0.45 |
| Zn0.8 Fe0.2O | 100 | 0.8 × 10−3 | 1.4 × 10−2 | 0.06 |
| Zn0.7 Fe0.3O | 71 | 0.6 × 10−3 | 2.0 × 10−2 | 0.03 |
| Zn0.6 Fe0.4O | 48 | 0.65 × 10−3 | 6.0 × 10−2 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Abdel-Fattah, E.M.; Alshehri, S.M. Impact of High Fe Doping on Structure, Optical, and Magnetic Properties of Zinc Oxide Nanostructures Synthesized by Hydrothermal Route. Crystals 2026, 16, 55. https://doi.org/10.3390/cryst16010055
Abdel-Fattah EM, Alshehri SM. Impact of High Fe Doping on Structure, Optical, and Magnetic Properties of Zinc Oxide Nanostructures Synthesized by Hydrothermal Route. Crystals. 2026; 16(1):55. https://doi.org/10.3390/cryst16010055
Chicago/Turabian StyleAbdel-Fattah, Essam M., and Salman M. Alshehri. 2026. "Impact of High Fe Doping on Structure, Optical, and Magnetic Properties of Zinc Oxide Nanostructures Synthesized by Hydrothermal Route" Crystals 16, no. 1: 55. https://doi.org/10.3390/cryst16010055
APA StyleAbdel-Fattah, E. M., & Alshehri, S. M. (2026). Impact of High Fe Doping on Structure, Optical, and Magnetic Properties of Zinc Oxide Nanostructures Synthesized by Hydrothermal Route. Crystals, 16(1), 55. https://doi.org/10.3390/cryst16010055

