Gemological, Mineralogical and Spectral Characteristics of Forsterite from Pitawak Mine, Sar-e-Sang, Badakhshan, Afghanistan
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Materials
2.2. Methods
2.2.1. Basic Gemological Analysis
2.2.2. Electron Probe Microanalysis (EPMA)
2.2.3. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)
2.2.4. Ultraviolet–Visible Absorption Spectroscopy (UV-VIS)
2.2.5. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2.6. Laser Raman Spectroscopy (RAMAN)
2.2.7. Photoluminescence Spectroscopy (PL)
3. Results
3.1. Basic Gemology Characteristics
3.2. Microscopic Characteristics
4. Compositional Characteristics
4.1. Electron Probe Microanalysis (EPMA)
4.2. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) Analysis Results
5. Spectral Characteristics
5.1. FTIR Spectroscopy Analysis
5.2. UV-Vis Absorption Spectroscopy Analysis
5.3. Raman Spectroscopy Analysis
5.4. Photoluminescence Spectroscopy Analysis
6. Discussion
- According to the research by Weeks et al. (1974), olivine-group minerals may exhibit red fluorescence where they contain Fe3+ or Mn2+ at octahedral sites [37]. Since Fe in the sample exists as Fe2+ in octahedral sites, and based on previous studies, the emission peak caused by Fe3+ in olivine is around 716 nm [36,37], Fe in the sample does not contribute to the red fluorescence. Instead, as analyzed in Section 5.4, the red fluorescence of the sample is caused by Mn2+.
- Metamorphic forsterite can well reflect its formation environment, and the mineral paragenetic association and relationships of forsterite can effectively constrain information such as protolith composition, temperature conditions, and metamorphic fluid composition. The mineral assemblage of the forsterite-bearing marble discovered at Pitawak mine is dolomite, forsterite, spinel, and phlogopite (Figure 7). Based on previous studies, it is known that forsterite is typically formed by the reaction of dolomite and siliceous components at high temperatures. This reaction occurs in a continental deep subduction environment similar to the study area at 610 °C to 660 °C and a pressure of 2.5–3.5 GPa [38], with a metamorphic fluid that is water-poor (under water-rich conditions, hydrous minerals such as tremolite and talc would tend to form). Therefore, this indicates that the protolith is a Si-rich dolomite [38,39,40]. Spinel is also a mineral that forms under conditions of relatively high temperature, certain pressure, and water-poor conditions, requiring extremely low SiO2 activity. The stability field of spinel does not coexist with quartz; only when the system is extremely Si-poor and Al- and Mg-rich will spinel form, instead of forming silicate minerals such as feldspar or mica. In addition, the formation of spinel requires an abundant source of Al2O3. Therefore, the protolith from which both forsterite and spinel can crystallize must be a “Mg- and Al-rich siliceous dolomite”. This composition is not common in ordinary pure carbonate rocks and usually implies that the protolith contains argillaceous interlayers or argillaceous admixtures, weathering products of igneous rocks (such as basalt), and minerals related to specific evaporite sequences, which is consistent with the conditions of Pitawak mine [12,38,39,40,41].
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blaise, J.; Cesbron, F. Données minéralogiques et pétrographiques sur le gisement de lapis lazuli de Sar-e-Sang, Hindou-Kouch, Afghanistan. Bull. Minéralogie 1966, 89, 333–343. [Google Scholar]
- Woodside, R.M.; Moore Thomas, P. Famous mineral localities: The Sar-e-Sang lapis mines, Kuran Wa Munjan district, Badakhshan Province, Afghanistan. Mineral. Rec. 2014, 45, 280–336. [Google Scholar]
- Pei, D.; Hui, L.; Hong, M.; Yang, Z.; Na, T. New Found Mineral Compositions of Lapis lazuli. China Gems Jades 2024, 8–15. [Google Scholar] [CrossRef]
- Cairncross, B. The Where of Mineral Names: Afghanite, Sar-e-Sang, Koksha Valley, Kuran wa Munjan District, Badakhshan, Afghanistan. Rocks Miner. 2021, 96, 568–571. [Google Scholar] [CrossRef]
- Orris, G.J.; Bliss, J.D. Mine and Mineral Occurrences of Afghanistan; Open-File Report 2002-110; U.S. Geological Survey: Reston, VA, USA, 2002. [CrossRef]
- Bariand, P.; Cesbron, F.; Giraud, R. Une nouvelle espèce minérale: L’afghanite de Sar-e-Sang, Badakhshan, Afghanistan. Comparaison avec les minéraux du groupe de la cancrinite. Bull. Société Fr. Minéralogie Cristallogr. 1968, 91, 34–42. [Google Scholar] [CrossRef]
- Maiorov, A.N.; Suderkin, A.I.; Krepoy, M.E. Report by the Survey and Prospecting Team on the Results Obtained in 1963–1964 at the Lapis Lazuli Occurrences of Afghanistan; Kabul Records Office of the Department of Geology and Mines (DGMS): Kabul, Afghanistan, 1965.
- Guastoni, A.; Demartin, F. Hervorragender Neufund: Tiefblaue-Afghanit-Kristalle von Sar-e-Sang, Badakhshan, Afghanistan. Lapis 2002, 27, 22–23. [Google Scholar]
- Poccoвский, Л.П.; Jun, C. Gem deposits in Afghanistan. Earth Environ. 1981, 01, 10–16. [Google Scholar]
- Wang, L.X.; Zhang, X.J. The main gemstone mines in Afghanistan. Xinjiang Geol. 2009, 27, 176–179. [Google Scholar]
- Lu, W.; Cao, J.; Zhang, L.; Zhang, Q.; He, S. Gemmological and Spectral Characteristic of Afghanite. J. Gems Gemmol. 2018, 20, 39–43. [Google Scholar] [CrossRef]
- Faryad, S.W.; Collett, S.; Petterson, M.; Sergeev, S.A. Magmatism and metamorphism linked to the accretion of continental blocks south of the Hindu Kush, Afghanistan. Lithos 2013, 175–176, 302–314. [Google Scholar] [CrossRef]
- Jan, M.Q.; Khan, M.A. Petrology of gem peridot from Sapat maficultramafic complex, Kohistan, NW Himalaya. Geol. Bull. Peshawar 1996, 29, 17–26. [Google Scholar]
- Zhang, R.X.; Yang, S.Y. A mathematical model for determining carbon coating thickness and its application in electron probe microanalysis. Microsc. Microanal. 2016, 22, 1374–1380. [Google Scholar] [CrossRef]
- Yang, S.Y.; Jiang, S.Y.; Mao, Q.; Chen, Z.Y.; Rao, C.; Li, X.L.; Li, W.C.; Yang, W.Q.; He, P.L.; Li, X. Electron probe microanalysis in geosciences: Analytical procedures and recent advances. At. Spectrosc. 2022, 43, 186–200. [Google Scholar] [CrossRef]
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A Compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newsl. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Detlef, G.; Xu, J.; Gao, G.; Chen, H. In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Droop, G.T.R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef]
- Zhang, L.; Smyth, J.R. Crystal chemistry of metal element substitution in olivine and its high-pressure polymorphs: Implications for the upper-mantle and the mantle transition zone. Earth-Sci. Rev. 2022, 232, 104127. [Google Scholar] [CrossRef]
- Burns, R.G. Crystal field spectra and evidence of cation ordering in olivine minerals. Am. Mineral. 1970, 55, 1608–1632. [Google Scholar]
- Burns, R.G.; Huggins, F.E.; Abu-Eid, R.M. Polarized absorption spectra of single crystals of lunar pyroxenes and olivines. Moon 1972, 4, 93–102. [Google Scholar] [CrossRef]
- Burns, R.G.; Huggins, F.E. Cation determinative curves for Mg-Fe-Mn olivines from vibrational spectra. Am. Mineral. 1972, 57, 962–985. [Google Scholar] [CrossRef]
- Wen, L. Mineral Infrared Spectroscopy; Chongqing University Press: Chongqing, China, 1989. [Google Scholar]
- Farmer, V.C. The Infrared Spectra of Minerals; Mineralogical Society: London, UK, 1974; pp. 331–358. [Google Scholar]
- Zhang, Z.; Ye, M.; Shen, A.H. Characterisation of Peridot from China’s Jilin Province and from North Korea. J. Gemmol. 2019, 36, 436–446. [Google Scholar] [CrossRef]
- Rossman, G.R.; Shannon, R.D.; Waring, R.K. Origin of the yellow colour of complex nickel oxides. J. Solid State Chem. 1981, 39, 277–287. [Google Scholar] [CrossRef]
- Tang, J.; Guo, Y.; Lai, X.; Liu, Y.; Wu, Q. Study on the correlation between Fe2+ and peridot’s yellow green color and quality evaluation of color based on CIE1976 L*a*b* uniform color space. In Proceedings of the 5th International Conference on Environment, Materials, Chemistry and Power Electronics, Zhengzhou, China, 11–12 April 2016; pp. 599–604. [Google Scholar] [CrossRef]
- Tang, W.; Guo, Y.; Ma, L. Influence of Fe2+ on the color appearance of yellow-green peridot. Key Eng. Mater. 2012, 492, 370–373. [Google Scholar] [CrossRef]
- Stockton, C.M.; Manson, D.V. Peridot from Tanzania. Gems Gemol. 1983, 19, 103–107. [Google Scholar] [CrossRef]
- Loeffler, B.M.; Burns, R.G. Shedding Light on the Color of Gems and Minerals: The selectrveabsorption of light according to wavelength—The result of various electronic processes whose energies correspond to certain wavelengths of visible light—Gives minerals their distirctive hues. Am. Sci. 1976, 64, 636–647. [Google Scholar]
- Chopelas, A. Single crystal Raman spectra of forsterite, fayalite, and monticellite. Am. Mineral. 1991, 76, 1101–1109. [Google Scholar]
- Foster, N.F.; Wozniakiewicz, P.J.; Price, M.C.; Kearsley, A.T.; Burchell, M.J. Identification by Raman spectroscopy of Mg–Fe content of olivine samples after impact at 6 km s−1 onto aluminium foil and aerogel: In the laboratory and in Wild-2 cometary samples. Geochim. Cosmochim. Acta 2013, 121, 1–14. [Google Scholar] [CrossRef]
- Kuebler, K.E.; Jolliff, B.L.; Wang, A.; Haskin, L.A. Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions. Geochim. Cosmochim. Acta 2006, 70, 6201–6222. [Google Scholar] [CrossRef]
- Green, G.R.; Walker, G. Luminescence excitation spectra of Mn2+ in synthetic forsterite. Phys. Chem. Miner. 1985, 12, 271–278. [Google Scholar] [CrossRef]
- Lin, L.; Min, Y.; Chaoshu, S.; Weiping, Z.; Baogui, Y. Synthesis and Luminescence Properties of Red Phosphors: Mn2+ Doped MgSiO3 and Mg2SiO4 Prepared by Sol-Gel Method. J. Rare Earths 2006, 24, 104–107. [Google Scholar] [CrossRef]
- Rager, H. Electric field gradients and asymmetry parameters of Fe3+, Mn2+, Cr3+, and Mg2+ in Mg2SiO4. J. Mol. Struct. 1980, 58, 215–220. [Google Scholar] [CrossRef]
- Weeks, R.A.; Pigg, J.C.; Finch, C.B. Charge-transfer spectra of Fe3+ and Mn2+ in synthetic forsterite(Mg2SiO4). Am. Mineral. 1974, 59, 1259–1266. [Google Scholar]
- Liang, X.; Qiao, L. Characteristics of Humite Group Minerals Formed in Metasomatic Experimentation and Physico-chemical Conditions for Their Formation. Acta Petrol. Mineral. 1990, 9, 340–350. [Google Scholar]
- Kato, T.; Enami, M.; Zhai, M. Ultra-high-pressure (UHP) marble and eclogite in the Su-Lu UHP terrane, eastern China. J. Metamorph. Geol. 2004, 15, 169–182. [Google Scholar] [CrossRef]
- Guo, S.; Chu, X.; Hermann, J.; Chen, Y.; Li, Q.; Wu, F.; Liu, C.; Sein, K. Multiple episodes of fluid infiltration along a single metasomatic channel in metacarbonates and implications for CO2 release in orogenic belts. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020988. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, X.; Chen, B.; Xue, Y. Dolomite marble and garnet amphibolite in the ophiolitic mélange in western Junggar: Relics of the Early Paleozoic oceanic crust and its deep subduction. Acta Petrol. Sin. 2008, 24, 2767–2777. Available online: https://www.sciengine.com/doi/10.0000/0cab172a23974745bb3359aa0717b58b (accessed on 10 November 2025).
- Biino, G.G.; Compagnoni, R. Very-high pressure metamorphism of the Brossasco coronite metagranite, southern Dora Maira Massif, Western Alps. Schweiz. Mineral. Und Petrogr. Mitteilungen 1992, 72, 347–363. [Google Scholar]
- Becker, H.; Altherr, R. Evidence from ultra-high pressure marbles for recycling of sediments into the mantle. Nature 1992, 358, 745–748. [Google Scholar] [CrossRef]







| Sample | Refractive Index | Birefringence | Specific Gravity | Mohs Hardness | Fluorescence |
|---|---|---|---|---|---|
| Fo-b3 | 1.631 | 0.35 | 3.28 | 7.5 | red |
| Fo-b4 | 1.631 | 0.35 | 3.28 | 7.5 | red |
| No. | CaO | MgO | SiO2 | NiO | FeO | MnO | Total |
|---|---|---|---|---|---|---|---|
| Fo1-1 | 0.02 | 56.61 | 41.54 | 0.02 | 0.83 | 0.05 | 99.06 |
| Fo1-2 | 0.01 | 56.76 | 42.05 | Bdl | 0.83 | 0.03 | 99.69 |
| Fo1-3 | 0.02 | 57.16 | 42.62 | 0.01 | 0.79 | 0.01 | 100.60 |
| Fo2-1 | 0.02 | 56.91 | 41.76 | 0.03 | 0.75 | 0.03 | 99.49 |
| Fo2-2 | 0.01 | 57.19 | 42.23 | Bdl | 0.79 | 0.03 | 100.25 |
| Fo2-3 | 0.02 | 57.03 | 41.97 | Bdl | 0.76 | 0.03 | 99.82 |
| Fo1avg | 0.02 | 56.84 | 42.07 | 0.01 | 0.82 | 0.03 | 99.78 |
| Fo2avg | 0.02 | 57.05 | 41.99 | 0.01 | 0.77 | 0.03 | 99.85 |
| No. | Ca | Mg | Si | Ni | Fe | Mn |
|---|---|---|---|---|---|---|
| Fo1-1 | 0.0005 | 2.0064 | 0.9876 | 0.0003 | 0.0165 | 0.0011 |
| Fo1-2 | 0.0003 | 1.9974 | 0.9926 | Bdl | 0.0164 | 0.0006 |
| Fo1-3 | 0.0005 | 1.9915 | 0.9962 | 0.0002 | 0.0153 | 0.0001 |
| Fo2-1 | 0.0004 | 2.0075 | 0.9881 | 0.0005 | 0.0148 | 0.0006 |
| Fo2-2 | 0.0002 | 2.0014 | 0.9912 | Bdl | 0.0155 | 0.0005 |
| Fo2-3 | 0.0006 | 2.0047 | 0.9896 | Bdl | 0.0150 | 0.0005 |
| Fo-b1avg | 0.0004 | 1.9984 | 0.9922 | 0.0002 | 0.0161 | 0.0006 |
| Fo-b2avg | 0.0004 | 2.0045 | 0.9896 | 0.0002 | 0.0151 | 0.0005 |
| No. | Li | B | Ca | Cr | Mn | Fe | Ni |
|---|---|---|---|---|---|---|---|
| FO2-1 | 9.96 | 138.17 | 5.94 | 1.85 | 413.98 | 5642.43 | 3.30 |
| FO2-2 | 9.40 | 138.83 | Bdl | 0.43 | 419.37 | 5720.73 | 3.12 |
| FO2-3 | 10.41 | 144.05 | 61.54 | Bdl | 426.47 | 5772.42 | 2.20 |
| FO1-1 | 10.43 | 139.75 | 342.58 | 1.56 | 433.32 | 6189.57 | 4.25 |
| FO1-2 | 9.96 | 142.35 | 8.23 | Bdl | 430.84 | 6291.37 | 3.83 |
| FO1-3 | 10.27 | 141.25 | 38.29 | 0.42 | 421.48 | 6194.15 | 4.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, D.; Chen, L.-R.-X.; Shen, H.-T.; Liu, Y.-G.; Qu, Z.; Yang, X.-Q.; Yin, H.-N.; Hu, Y.-K.; Hayat, A.B.; Zhang, S.-T.; et al. Gemological, Mineralogical and Spectral Characteristics of Forsterite from Pitawak Mine, Sar-e-Sang, Badakhshan, Afghanistan. Crystals 2026, 16, 48. https://doi.org/10.3390/cryst16010048
Zhang D, Chen L-R-X, Shen H-T, Liu Y-G, Qu Z, Yang X-Q, Yin H-N, Hu Y-K, Hayat AB, Zhang S-T, et al. Gemological, Mineralogical and Spectral Characteristics of Forsterite from Pitawak Mine, Sar-e-Sang, Badakhshan, Afghanistan. Crystals. 2026; 16(1):48. https://doi.org/10.3390/cryst16010048
Chicago/Turabian StyleZhang, Dai, Liu-Run-Xuan Chen, Hong-Tao Shen, Yun-Gui Liu, Zhi Qu, Xiao-Qi Yang, Hao-Nan Yin, Yu-Kai Hu, Abul Basit Hayat, Shi-Tao Zhang, and et al. 2026. "Gemological, Mineralogical and Spectral Characteristics of Forsterite from Pitawak Mine, Sar-e-Sang, Badakhshan, Afghanistan" Crystals 16, no. 1: 48. https://doi.org/10.3390/cryst16010048
APA StyleZhang, D., Chen, L.-R.-X., Shen, H.-T., Liu, Y.-G., Qu, Z., Yang, X.-Q., Yin, H.-N., Hu, Y.-K., Hayat, A. B., Zhang, S.-T., Zuo, R.-H., & Song, Q.-Y. (2026). Gemological, Mineralogical and Spectral Characteristics of Forsterite from Pitawak Mine, Sar-e-Sang, Badakhshan, Afghanistan. Crystals, 16(1), 48. https://doi.org/10.3390/cryst16010048

