Design of Multifunctional Polarization Waveplates Based on Thermal Phase-Change Metasurfaces
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sb2Se3 in Low-Temperature (LT) (Amorphous) Phase
3.2. Sb2Se3 in High-Temperature (HT) (Crystalline) Phase
3.3. The Influence of Potential Process Errors on Metasurfaces
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldstein, D.H. Polarized Light, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhong, H.; Deng, C.; Zhang, C.L.; Zhao, Y.J. Polarization sensitive terahertz time-domain spectroscopy for birefringent materials. Appl. Phys. Lett. 2009, 94, 904. [Google Scholar] [CrossRef]
- Wu, Q.H.; Hodgkinson, I.J. Materials for Birefringent Coatings. Appl. Opt. 1994, 33, 8109–8110. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gao, S.; Xiao, X.; Ye, X.; Wu, S.; Song, W.; Li, H.; Zhu, S.; Li, T. Highly Efficient Metasurface Quarter-Wave Plate with Wave Front Engineering. Adv. Photonics Res. 2021, 2, 2000154. [Google Scholar] [CrossRef]
- Ding, F.; Wang, Z.; He, S.; Shalaev, V.M.; Kildishev, A.V. Broadband High-Efficiency Half-Wave Plate: A Supercell-Based Plasmonic Metasurface Approach. ACS Nano 2015, 9, 4111–4119. [Google Scholar] [CrossRef]
- Turunen, J.; Friesem, A.A.; Friberg, A.T. Polarization Optics. J. Opt. A Pure Appl. Opt. 2011, 6, S1. [Google Scholar] [CrossRef]
- Meng, W.; Fröch, J.E.; Cheng, K.; Pi, D.; Li, B.; Majumdar, A.; Maier, S.A.; Ren, H.; Gu, M.; Fang, X. Ultranarrow-linewidth wavelength-vortex metasurface holography. Sci. Adv. 2025, 11, eadt9159. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Brongersma, M.L.; Yao, J.; Chen, M.K.; Levy, U.; Tsai, D.P.; Zheludev, N.I.; Faraon, A.; Arbabi, A.; Yu, N.; et al. Roadmap for Optical Metasurfaces. ACS Photonics 2024, 11, 816–865. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, E.; Park, Y.; Seong, J.; Kim, H.; Kang, H.; Kang, D.; Han, D.; Rho, J. The Road to Commercializing Optical Metasurfaces: Current Challenges and Future Directions. ACS Nano 2025, 19, 3008–3018. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Wróbel, J.; Kula, P. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal. Sci. Rep. 2019, 9, 20367. [Google Scholar] [CrossRef]
- Bhowmik, T.; Kr. Bhowmik, B.; Kr. Pandey, P.; Kumar, G.; Sikdar, D. Dual-band electro-optic modulator based on tunable broadband metamaterial absorber. Opt. Laser Technol. 2023, 161, 109129. [Google Scholar] [CrossRef]
- Ma, T.; Zhao, K.; Gu, M.; Zhou, H.; Liu, C.; Cheng, C.; Dong, Q.; Ma, L. Longitudinal Multi-Channel Focused Vortex and Vector Beams Generation by Quarter-Wave Plate Meta-Atom Metasurfaces. Nanomaterials 2025, 15, 324. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wu, C.; Meng, C.; Bozhevolnyi, S.I.; Ding, F. Functional Metasurface Quarter-Wave Plates for Simultaneous Polarization Conversion and Beam Steering. ACS Nano 2021, 15, 18532–18540. [Google Scholar] [CrossRef]
- He, H.; Tang, S.; Zheng, Z.; Ding, F. Multifunctional all-dielectric metasurface quarter-wave plates for polarization conversion and wavefront shaping. Opt. Lett. 2022, 47, 2478–2481. [Google Scholar] [CrossRef]
- Li, T.; Hu, X.; Chen, H.; Zhao, C.; Xu, Y.; Wei, X.; Song, G. Metallic metasurfaces for high efficient polarization conversion control in transmission mode. Opt. Express 2017, 25, 23597–23604. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Zhao, C.; Zheng, C.; Xu, H.; Xu, W.; Tan, Q.; Song, C.; Shen, Y.; Yao, J. Meta-optics empowered by all-silicon quarter-wave plates for generating focused vortex beams. Chin. J. Phys. 2024, 92, 651–663. [Google Scholar] [CrossRef]
- Zhao, Y.; Alù, A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett. 2013, 13, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Aieta, F.; Genevet, P.; Kats, M.A.; Gaburro, Z.; Capasso, F. A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Lett. 2012, 12, 6328–6333. [Google Scholar] [CrossRef]
- Kebci, Z.; Hamidi, M.; Zeghdoudi, T.; Belkhir, A.; Lamrous, O.; Baida, F.I. Design of a metallic half-wave plate based on birefringent metamaterial for applications in the visible range. Phys. Scr. 2025, 100, 035552. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Cheng, H.; Chen, S.; Tian, J. Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface. Sci. Rep. 2015, 5, 18106. [Google Scholar] [CrossRef]
- Huang, X.; Ma, X.; Gao, H.; Guo, L.; Li, X. Ultra-wideband linear-polarization conversion metasurface with high-efficient asymmetric transmission. Appl. Phys. A 2023, 129, 278. [Google Scholar] [CrossRef]
- Michel, A.-K.U.; Meyer, S.; Essing, N.; Lassaline, N.; Lightner, C.R.; Bisig, S.; Norris, D.J.; Chigrin, D.N. The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces. Adv. Opt. Mater. 2021, 9, 2001243. [Google Scholar] [CrossRef]
- Landau, L. The Theory of Phase Transitions. Nature 1936, 138, 840–841. [Google Scholar] [CrossRef]
- Xiao, S.; Chettiar, U.K.; Kildishev, A.V.; Drachev, V.; Khoo, I.C.; Shalaev, V.M. Tunable magnetic response of metamaterials. Appl. Phys. Lett. 2009, 95, 033115. [Google Scholar] [CrossRef]
- Shcherbakov, M.R.; Vabishchevich, P.P.; Shorokhov, A.S.; Chong, K.E.; Choi, D.-Y.; Staude, I.; Miroshnichenko, A.E.; Neshev, D.N.; Fedyanin, A.A.; Kivshar, Y.S. Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. Nano Lett. 2015, 15, 6985–6990. [Google Scholar] [CrossRef] [PubMed]
- Kafaie Shirmanesh, G.; Sokhoyan, R.; Pala, R.A.; Atwater, H.A. Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. Nano Lett. 2018, 18, 2957–2963. [Google Scholar] [CrossRef]
- Chen, G.Y.; Dneg, B.; Cai, G.B.; Zhang, T.K.; Dong, W.F.; Zhang, W.X.; Xu, A.W. The Fractal Splitting Growth of Sb2S3 and Sb2Se3 Hierarchical Nanostructures. J. Phys. Chem. C 2008, 112, 672–679. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Chen, S.; Qin, S.; Liu, X.; Chen, J.; Xue, D.J.; Luo, M.; Cao, Y.; Cheng, Y. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 2015, 9, 409–415. [Google Scholar] [CrossRef]
- Chein, R.; Huang, G. Thermoelectric cooler application in electronic cooling. Appl. Therm. Eng. 2004, 24, 2207–2217. [Google Scholar] [CrossRef]
- Zou, H.; Rowe, D.M.; Williams, S.G.K. Peltier effect in a co-evaporated Sb2Te3(P)-Bi2Te3(N) thin film thermocouple. Thin Solid Film. 2002, 408, 270–274. [Google Scholar] [CrossRef]
- Drebushchak, V.A. The Peltier effect. J. Therm. Anal. Calorim. 2008, 91, 311–315. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A New Family of Ultralow Loss Reversible Phase-Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447. [Google Scholar] [CrossRef]
- Babar, S.; Weaver, J.H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 2015, 54, 477–481. [Google Scholar] [CrossRef]
- Luk’Yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707. [Google Scholar] [CrossRef] [PubMed]
- Bozhevolnyi, S.I.; Erland, J.; Leosson, K.; Skovgaard, P.M.W.; Hvam, J.M. Waveguiding in Surface Plasmon Polariton Band Gap Structures. Phys. Rev. Lett. 2001, 86, 3008–3011. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 2009, 325, 1513–1515. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, B.; Zou, Y.; Ge, Z.; Lv, L.; Liang, T.; Zhai, K.; Song, G. Design of Multifunctional Polarization Waveplates Based on Thermal Phase-Change Metasurfaces. Crystals 2025, 15, 462. https://doi.org/10.3390/cryst15050462
Cheng B, Zou Y, Ge Z, Lv L, Liang T, Zhai K, Song G. Design of Multifunctional Polarization Waveplates Based on Thermal Phase-Change Metasurfaces. Crystals. 2025; 15(5):462. https://doi.org/10.3390/cryst15050462
Chicago/Turabian StyleCheng, Bo, Yuxiao Zou, Zihui Ge, Longfeng Lv, Taohua Liang, Kunpeng Zhai, and Guofeng Song. 2025. "Design of Multifunctional Polarization Waveplates Based on Thermal Phase-Change Metasurfaces" Crystals 15, no. 5: 462. https://doi.org/10.3390/cryst15050462
APA StyleCheng, B., Zou, Y., Ge, Z., Lv, L., Liang, T., Zhai, K., & Song, G. (2025). Design of Multifunctional Polarization Waveplates Based on Thermal Phase-Change Metasurfaces. Crystals, 15(5), 462. https://doi.org/10.3390/cryst15050462