Delicate Competition Between Different Excitonic Orderings in Ta2NiSe5
Abstract
1. Introduction
2. Model and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
TNS |
References
- Sunshine, S.A.; Ibers, J.A. Structure and physical properties of the new layered ternary chalcogenides tantalum nickel sulfide (Ta2NiS5) and tantalum nickel selenide (Ta2NiSe5). Inorg. Chem. 1985, 24, 3611–3614. [Google Scholar] [CrossRef]
- Di Salvo, F.; Chen, C.; Fleming, R.; Waszczak, J.; Dunn, R.; Sunshine, S.; Ibers, J.A. Physical and structural properties of the new layered compounds Ta2NiS5 and Ta2NiSe5. J. Less Common Met. 1986, 116, 51–61. [Google Scholar] [CrossRef]
- Lu, Y.; Kono, H.; Larkin, T.; Rost, A.; Takayama, T.; Boris, A.; Keimer, B.; Takagi, H. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 2017, 8, 14408. [Google Scholar] [CrossRef] [PubMed]
- Subedi, A. Orthorhombic-to-monoclinic transition in Ta2NiSe5 due to a zone-center optical phonon instability. Phys. Rev. Mater. 2020, 4, 083601. [Google Scholar] [CrossRef]
- Lee, J.; Kang, C.J.; Eom, M.J.; Kim, J.S.; Min, B.I.; Yeom, H.W. Strong interband interaction in the excitonic insulator phase of Ta2NiSe5. Phys. Rev. B 2019, 99, 075408. [Google Scholar] [CrossRef]
- Watson, M.D.; Marković, I.; Morales, E.A.; Le Fèvre, P.; Merz, M.; Haghighirad, A.A.; King, P.D. Band hybridization at the semimetal-semiconductor transition of Ta2NiSe5 enabled by mirror-symmetry breaking. Phys. Rev. Res. 2020, 2, 013236. [Google Scholar] [CrossRef]
- Wakisaka, Y.; Sudayama, T.; Takubo, K.; Mizokawa, T.; Arita, M.; Namatame, H.; Taniguchi, M.; Katayama, N.; Nohara, M.; Takagi, H. Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy. Phys. Rev. Lett. 2009, 103, 026402. [Google Scholar] [CrossRef]
- Wakisaka, Y.; Sudayama, T.; Takubo, K.; Mizokawa, T.; Saini, N.; Arita, M.; Namatame, H.; Taniguchi, M.; Katayama, N.; Nohara, M.; et al. Photoemission spectroscopy of Ta2NiSe5. J. Supercond. Nov. Magn. 2012, 25, 1231–1234. [Google Scholar] [CrossRef]
- Seki, K.; Wakisaka, Y.; Kaneko, T.; Toriyama, T.; Konishi, T.; Sudayama, T.; Saini, N.; Arita, M.; Namatame, H.; Taniguchi, M.; et al. Excitonic Bose–Einstein condensation in Ta2NiSe5 above room temperature. Phys. Rev. B 2014, 90, 155116. [Google Scholar] [CrossRef]
- Des Cloizeaux, J. Exciton instability and crystallographic anomalies in semiconductors. J. Phys. Chem. Solids 1965, 26, 259–266. [Google Scholar] [CrossRef]
- Jérome, D.; Rice, T.; Kohn, W. Excitonic insulator. Phys. Rev. 1967, 158, 462–475. [Google Scholar] [CrossRef]
- Kuneš, J. Excitonic condensation in systems of strongly correlated electrons. J. Phys. Condens. Matter 2015, 27, 333201. [Google Scholar] [CrossRef]
- Kaneko, T.; Toriyama, T.; Konishi, T.; Ohta, Y. Electronic structure of Ta2NiSe5 as a candidate for excitonic insulators. J. Phys. Conf. Ser. 2012, 400, 032035. [Google Scholar] [CrossRef]
- Kaneko, T.; Toriyama, T.; Konishi, T.; Ohta, Y. Orthorhombic-to-monoclinic phase transition of Ta2NiSe5 induced by the Bose–Einstein condensation of excitons. Phys. Rev. B 2013, 87, 035121. [Google Scholar] [CrossRef]
- Mor, S.; Herzog, M.; Golež, D.; Werner, P.; Eckstein, M.; Katayama, N.; Nohara, M.; Takagi, H.; Mizokawa, T.; Monney, C.; et al. Ultrafast Electronic Band Gap Control in an Excitonic Insulator. Phys. Rev. Lett. 2017, 119, 086401. [Google Scholar] [CrossRef]
- Mor, S.; Herzog, M.; Noack, J.; Katayama, N.; Nohara, M.; Takagi, H.; Trunschke, A.; Mizokawa, T.; Monney, C.; Stähler, J. Inhibition of the photoinduced structural phase transition in the excitonic insulator Ta2NiSe5. Phys. Rev. B 2018, 97, 115154. [Google Scholar] [CrossRef]
- Okazaki, K.; Ogawa, Y.; Suzuki, T.; Yamamoto, T.; Someya, T.; Michimae, S.; Watanabe, M.; Lu, Y.; Nohara, M.; Takagi, H.; et al. Photo-induced semimetallic states realised in electron–hole coupled insulators. Nat. Commun. 2018, 9, 4322. [Google Scholar] [CrossRef]
- Bretscher, H.M.; Andrich, P.; Telang, P.; Singh, A.; Harnagea, L.; Sood, A.K.; Rao, A. Ultrafast melting and recovery of collective order in the excitonic insulator Ta2NiSe5. Nat. Commun. 2021, 12, 1699. [Google Scholar] [CrossRef]
- Saha, T.; Golež, D.; De Ninno, G.; Mravlje, J.; Murakami, Y.; Ressel, B.; Stupar, M.; Ribič, P.R. Photoinduced phase transition and associated timescales in the excitonic insulator Ta2NiSe5. Phys. Rev. B 2021, 103, 144304. [Google Scholar] [CrossRef]
- Nakano, A.; Nagai, T.; Katayama, N.; Sawa, H.; Taniguchi, H.; Terasaki, I. Exciton Transport in the Electron–Hole System Ta2NiSe5. J. Phys. Soc. Jpn. 2019, 88, 113706. [Google Scholar] [CrossRef]
- Eisenstein, J. Exciton Condensation in Bilayer Quantum Hall Systems. Annu. Rev. Condens. Matter Phys. 2014, 5, 159–181. [Google Scholar] [CrossRef]
- Li, J.I.A.; Taniguchi, T.; Watanabe, K.; Hone, J.; Dean, C.R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 2017, 13, 751–755. [Google Scholar] [CrossRef]
- Liu, X.; Watanabe, K.; Taniguchi, T.; Halperin, B.I.; Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 2017, 13, 746–750. [Google Scholar] [CrossRef]
- Wang, Z.; Rhodes, D.A.; Watanabe, K.; Taniguchi, T.; Hone, J.C.; Shan, J.; Mak, K.F. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 2019, 574, 76–80. [Google Scholar] [CrossRef]
- Gupta, S.; Kutana, A.; Yakobson, B.I. Heterobilayers of 2D materials as a platform for excitonic superfluidity. Nat. Commun. 2020, 11, 2989. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, F.; Kuisma, M.; Pakdel, S.; Thygesen, K.S. Excitonic Insulators and Superfluidity in Two-Dimensional Bilayers without External Fields. J. Phys. Chem. Lett. 2023, 14, 2277–2283. [Google Scholar] [CrossRef]
- Mazza, G.; Rösner, M.; Windgätter, L.; Latini, S.; Hübener, H.; Millis, A.J.; Rubio, A.; Georges, A. Nature of symmetry breaking at the excitonic insulator transition: Ta 2 NiSe 5. Phys. Rev. Lett. 2020, 124, 197601. [Google Scholar] [CrossRef] [PubMed]
- Windgätter, L.; Rösner, M.; Mazza, G.; Hübener, H.; Georges, A.; Millis, A.J.; Latini, S.; Rubio, A. Common microscopic origin of the phase transitions in Ta2NiS5 and the excitonic insulator candidate Ta2NiSe5. npj Comput. Mater. 2021, 7, 210. [Google Scholar] [CrossRef]
- Baldini, E.; Zong, A.; Choi, D.; Lee, C.; Michael, M.H.; Windgaetter, L.; Mazin, I.I.; Latini, S.; Azoury, D.; Lv, B.; et al. The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature. Proc. Natl. Acad. Sci. 2023, 120, e2221688120. [Google Scholar] [CrossRef]
- Katsumi, K.; Alekhin, A.; Souliou, S.M.; Merz, M.; Haghighirad, A.A.; Le Tacon, M.; Houver, S.; Cazayous, M.; Sacuto, A.; Gallais, Y. Disentangling Lattice and Electronic Instabilities in the Excitonic Insulator Candidate Ta2NiSe5 by Nonequilibrium Spectroscopy. Phys. Rev. Lett. 2023, 130, 106904. [Google Scholar] [CrossRef]
- Chatterjee, B.; Mravlje, J.; Golež, D. Collective modes and Raman response in Ta2NiSe5. Phys. Rev. B 2025, 111, L121106. [Google Scholar] [CrossRef]
- Mostofi, A.A.; Yates, J.R.; Lee, Y.S.; Souza, I.; Vanderbilt, D.; Marzari, N. wannier90: A tool for obtaining maximally localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699. [Google Scholar] [CrossRef]
- Sun, Z.; Kaneko, T.; Golež, D.; Millis, A.J. Second-order Josephson effect in excitonic insulators. Phys. Rev. Lett. 2021, 127, 127702. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, B.; Yao, J.; Yan, D.; Lei, X.; Gao, J.; Guo, Z.; Jin, F.; Li, Y.; Yuan, Z.; et al. Evidence for an excitonic insulator state in Ta2Pd3Te5. Phys. Rev. X 2024, 14, 011046. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, Y.; Yan, D.; Jiang, B.; Yang, T.; Li, J.; Guo, Z.; Huang, Y.; Haobo; Li, Q.; et al. Spontaneous gap opening and potential excitonic states in an ideal Dirac semimetal Ta2Pd3Te5. Phys. Rev. X 2024, 14, 011047. [Google Scholar] [CrossRef]
Cases | Hopping Matrix Elements t() |
---|---|
Intra-chain Ta-Ta | (, 0) = (, 0) = −0.72 eV |
(0, 0) = 1.35 eV, i = 1,...,4 | |
Intra-chain Ni-Ni | (, 0) = (, 0) = 0.30 eV, |
(0, 0) = −0.36 eV, i = 5, 6 | |
Intra-chain Ta-Ni | (, 0) = (, 0) = (0) = (0) |
= (0) = (0) = (, 0), (, 0) = −0.035 eV | |
Inter-chain Ta-Ni | (, 0) = (, 0), (, ) = |
(, ) = −0.04 eV, | |
(, 0) = (, 0) = | |
(, ) = (, ) = (, ) | |
Inter-chain Ta-Ta | (0) = (, 0) = (, ) = |
(0, ) = 0.02 eV | |
Inter-chain Ni-Ni | (0) = (, 0) = (, ) = |
(0, ) = −0.03 eV |
Ordering | Comment | |||
---|---|---|---|---|
(1-1-11) | 1.765289 | 0.138 | 0.308 | |
(11-1-1) | 1.766109 | 0.133 | 0.328 | + |
(1-111) | 1.765679 | 0.139 | 0.340 | + |
Config * | GS | E | Comment | ||||
---|---|---|---|---|---|---|---|
I | (1-1-11) | 3.9 | - | ||||
II | (11-1-1) | 7.2 | Ta-Ta interchain | ||||
III | (1-1-11) | 3.9 | Ta-Ni intrachain | ||||
IV | (1-1-11) | 3.9 | Ta-Ni interchain | ||||
V | (11-1-1) | 7.4 | Ni-Ni interchain | ||||
VI | (1-1-11) | 4.3 | Ta-Ta, Ni-Ni interchain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatterjee, B.; Golež, D.; Mravlje, J. Delicate Competition Between Different Excitonic Orderings in Ta2NiSe5. Crystals 2025, 15, 414. https://doi.org/10.3390/cryst15050414
Chatterjee B, Golež D, Mravlje J. Delicate Competition Between Different Excitonic Orderings in Ta2NiSe5. Crystals. 2025; 15(5):414. https://doi.org/10.3390/cryst15050414
Chicago/Turabian StyleChatterjee, Banhi, Denis Golež, and Jernej Mravlje. 2025. "Delicate Competition Between Different Excitonic Orderings in Ta2NiSe5" Crystals 15, no. 5: 414. https://doi.org/10.3390/cryst15050414
APA StyleChatterjee, B., Golež, D., & Mravlje, J. (2025). Delicate Competition Between Different Excitonic Orderings in Ta2NiSe5. Crystals, 15(5), 414. https://doi.org/10.3390/cryst15050414