Evaluating Machine Learning Models for Predicting Hardness of AlCoCrCuFeNi High-Entropy Alloys
Abstract
:1. Introduction
2. Machine Learning (ML) Algorithms
2.1. Brief Notes on Various ML Algorithms Used in the Present Study
2.1.1. Support Vector Machine
2.1.2. SGD Regressor
2.1.3. Bayesian Ridge
2.1.4. Automatic Relevance Determination Regression
2.1.5. Passive-Aggressive Regressor
2.1.6. Theil–Sen Regressor
2.1.7. Linear Regression
2.1.8. Random Forest
2.1.9. Backpropagation Neural Networks
3. Data Collection and Processing
4. Results
4.1. Model Development
4.2. Comparing the Prediction Accuracy of Various ML Algorithms
4.3. Testing of BPNN Model
4.4. Effect of Element Concentration on the Hardness
4.5. Validation of the Model Predictions with Experimental Results
4.6. Significance of Alloy Components for the Hardness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BPNN | Backpropagation neural network. |
IRI | Index of relative importance. |
HEA | High-entropy alloy. |
FCC | Face centered cubic. |
BCC | Body-centered cubic. |
ML | Machine learning. |
References
- George, E.P.; Curtin, W.A.; Tasan, C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Kaufmann, K.; Vecchio, K.S. Searching for high entropy alloys: A machine learning approach. Acta Mater. 2020, 198, 178–222. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, S.; Sun, Y.; Hao, Y.; An, B.; Li, Q.; Wang, C.-A. Microstructure and mechanical properties of high entropy CrMnFeCoNi alloy processed by electopulsing-assisted ultrasonic surface rolling. Mater. Sci. Eng. A 2020, 795, 140004. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Lee, S.Y.; Byeon, S.; Kim, H.S.; Jin, H.; Lee, S. Deep learning-based phase prediction of high-entropy alloys: Optimization, generation, and explanation. Mater. Des. 2021, 197, 109260. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Liaw, P.K. Alloy Design and Properties Optimization of High-Entropy Alloys. JOM 2012, 64, 830–838. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, C.; Chen, S.L.; Zhu, J.; Cao, W.S.; Kattner, U.R. An understanding of high entropy alloys from phase diagram calculations. Calphad 2014, 45, 1–10. [Google Scholar] [CrossRef]
- Lederer, Y.; Toher, C.; Vecchio, K.S.; Curtarolo, S. The search for high entropy alloys: A high-throughput ab-initio approach. Acta Mater. 2018, 159, 364–383. [Google Scholar] [CrossRef]
- Rickman, J.M.; Chan, H.M.; Harmer, M.P.; Smeltzer, J.A.; Marvel, C.J.; Roy, A.; Balasubramanian, G. Materials informatics for the screening of multi-principal elements and high-entropy alloys. Nat. Commun. 2019, 10, 2618. [Google Scholar] [CrossRef]
- Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, Y.; He, Q.; Ding, Z.; Li, F.; Yang, Y. Machine learning guided appraisal and exploration of phase design for high entropy alloys. NPJ Comput. Mater. 2019, 5, 128. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Tariq, H.M.R.; Reddy, D.Y.C.; Kang, S.-G.; Reddy, N.G.S. Prediction of Creep Rupture Life of 5Cr-0.5Mo Steel Using Machine Learning Models. Metals 2025, 15, 288. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Jui, C.-Y.; Lee, W.-J.; Yeh, A.-C. Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning. JOM 2019, 71, 3433–3442. [Google Scholar] [CrossRef]
- Menou, E.; Tancret, F.; Toda-Caraballo, I.; Ramstein, G.; Castany, P.; Bertrand, E.; Gautier, N.; Díaz-Del-Castillo, P.E.J.R. Computational design of light and strong high entropy alloys (HEA): Obtainment of an extremely high specific solid solution hardening. Scr. Mater. 2018, 156, 120–123. [Google Scholar] [CrossRef]
- Wang, J.; Kwon, H.; Kim, H.S.; Lee, B.-J. A neural network model for high entropy alloy design. NPJ Comput. Mater. 2023, 9, 60. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Tiwari, S.; Nagamani, M.; Kang, S.-G.; Reddy, N.G.S. Data-Driven ANN-Based Predictive Modeling of Mechanical Properties of 5Cr-0.5Mo Steel: Impact of Composition and Service Temperature. Crystals 2025, 15, 213. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Tiwari, S.; Panigrahi, B.B.; Seol, J.B.; Reddy, N.S. Neural Network-Based Modeling of the Interplay between Composition, Service Temperature, and Thermal Conductivity in Steels for Engineering Applications. Int. J. Thermophys. 2024, 45, 137. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, Y.; Wang, C.; Xue, D.; Bai, Y.; Antonov, S.; Dai, L.; Lookman, T.; Su, Y. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2019, 170, 109–117. [Google Scholar] [CrossRef]
- Singh, S.; Wanderka, N.; Murty, B.S.; Glatzel, U.; Banhart, J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011, 59, 182–190. [Google Scholar] [CrossRef]
- Rashidi, A.; Sigari, M.H.; Maghiar, M.; Citrin, D. An analogy between various machine-learning techniques for detecting construction materials in digital images. KSCE J. Civ. Eng. 2016, 20, 1178–1188. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Bottou, L. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings of COMPSTAT’2010; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; pp. 177–186. [Google Scholar]
- MacKay, D.J.C. Bayesian Interpolation. Neural Comput. 1992, 4, 415–447. [Google Scholar] [CrossRef]
- Mackay, D.J.C. Probable networks and plausible predictions—A review of practical Bayesian methods for supervised neural networks. Netw. Comput. Neural Syst. 1995, 6, 469–505. [Google Scholar] [CrossRef]
- Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; Singer, Y. Online Passive-Aggressive Algorithms. J. Mach. Learn. Res. 2006, 7, 551–585. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Fernandes, A.C.P.; Fonseca, A.R.; Pacheco, F.A.L.; Fernandes, L.S. Water quality predictions through linear regression—A brute force algorithm approach. MethodsX 2023, 10, 102153. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1. [Google Scholar]
- Sharma, N.; Ghosh, S.; Saha, M. Open Data for Sustainable Community: Glocalized Sustainable Development Goals; Springer: Singapore, 2021. [Google Scholar]
- Tung, C.-C.; Yeh, J.-W.; Shun, T.-T.; Chen, S.-K.; Huang, Y.-S.; Chen, H.-C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 2007, 61, 1–5. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Koppoju, S.; Konduri, S.P.; Chalavadi, P.; Bonta, S.R.; Mantripragada, R. Effect of Ni on Microstructure and Mechanical Properties of CrMnFeCoNi High Entropy Alloy. Trans. Indian Inst. Met. 2020, 73, 853–862. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yeh, J.-W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Tong, C.-J.; Chen, Y.-L.; Yeh, J.-W.; Lin, S.-J.; Chen, S.-K.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Microstructure characterization of Alx CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 881–893. [Google Scholar] [CrossRef]
- Qin, G.; Xue, W.; Fan, C.; Chen, R.; Wang, L.; Su, Y.; Ding, H.; Guo, J. Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100-xCox high-entropy alloys. Mater. Sci. Eng. A 2018, 710, 200–205. [Google Scholar] [CrossRef]
- Tong, C.-J.; Chen, M.-R.; Yeh, J.-W.; Lin, S.-J.; Chen, S.-K.; Shun, T.-T.; Chang, S.-Y. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 1263–1271. [Google Scholar] [CrossRef]
- Reddy, N.S.; Panigrahi, B.B.; Ho, C.M.; Kim, J.H.; Lee, C.S. Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys. Comput. Mater. Sci. 2015, 107, 175–183. [Google Scholar] [CrossRef]
Variable | Variables | Minimum | Maximum | Average | Std. Dev. |
---|---|---|---|---|---|
Inputs | Al | 0 | 46.2 | 16.89 | 11.26 |
Co | 0 | 42.9 | 14.56 | 10.23 | |
Cr | 0 | 55.6 | 18.52 | 8.52 | |
Cu | 0 | 29 | 10.65 | 9.2 | |
Fe | 0 | 46.9 | 18.07 | 7.44 | |
Ni | 0 | 50 | 21.31 | 9.2 | |
Output | Hardness | 110 | 775 | 422.07 | 187.66 |
S No | Composition (at.%) | Hardness (Exp.) | Hardness (BPNN) | Error | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Al | Co | Cr | Cu | Fe | Ni | |||||
1 | 0 | 22.2 | 22.2 | 11.1 | 22.2 | 22.2 | 174 | 160.63 | 13.37 | [18] |
2 | 7 | 23.3 | 23.3 | 0 | 23.3 | 23.3 | 125 | 113.68 | 11.32 | [18] |
3 | 22.2 | 22.2 | 22.2 | 11.1 | 0 | 22.2 | 564 | 552.28 | 11.72 | [18] |
4 | 25 | 0 | 25 | 0 | 25 | 25 | 558 | 517.52 | 40.48 | [18] |
5 | 27.3 | 18.2 | 18.2 | 0 | 18.2 | 18.2 | 482 | 462.23 | 19.77 | [18] |
6 | 10 | 20 | 20 | 10 | 20 | 20 | 204 | 197.94 | 6.06 | [18] |
7 | 33.3 | 16.7 | 16.7 | 0 | 16.7 | 16.7 | 510 | 542.74 | 32.74 | [18] |
8 | 18.2 | 18.2 | 18.2 | 9.1 | 18.2 | 18.2 | 563 | 560.96 | 2.04 | [18] |
9 | 11.1 | 22.2 | 22.2 | 0 | 22.2 | 22.2 | 160 | 172.77 | 12.77 | [18] |
10 | 16.7 | 16.7 | 16.7 | 16.7 | 16.7 | 16.7 | 410 | 409.6 | 0.4 | [18] |
11 | 0.5 | 19.9 | 19.9 | 19.9 | 19.9 | 19.9 | 208 | 161.84 | 46.16 | [31] |
12 | 19.9 | 0.5 | 19.9 | 19.9 | 19.9 | 19.9 | 473 | 469.61 | 3.39 | [31] |
13 | 19.9 | 19.9 | 19.9 | 19.9 | 0.5 | 19.9 | 418 | 407.25 | 10.75 | [31] |
14 | 19.9 | 19.9 | 19.9 | 19.9 | 19.9 | 0.5 | 423 | 466.72 | 43.72 | [31] |
Alloys [36] | Measured Composition (at.%) | Experimental HV [38] | Predicted HV | |||||
---|---|---|---|---|---|---|---|---|
Al | Co | Cr | Cu | Fe. | Ni | |||
Al0.0CoCrCuFeNi | 0 | 20.9 | 21.4 | 16.5 | 20.8 | 20.5 | 135 ± 20 | 160 |
Al1.5CoCrCuFeNi | 24.3 | 15.5 | 15.6 | 13.7 | 15.6 | 15.3 | 510 ± 20 | 540 |
Al3.0CoCrCuFeNi | 28.9 | 12.6 | 11.2 | 11.7 | 13.5 | 12.1 | 650 ± 30 | 780 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paturi, U.M.R.; Ishtiaq, M.; Lakshmi Narayana, P.; Maurya, A.K.; Choi, S.-W.; Reddy, N.G.S. Evaluating Machine Learning Models for Predicting Hardness of AlCoCrCuFeNi High-Entropy Alloys. Crystals 2025, 15, 404. https://doi.org/10.3390/cryst15050404
Paturi UMR, Ishtiaq M, Lakshmi Narayana P, Maurya AK, Choi S-W, Reddy NGS. Evaluating Machine Learning Models for Predicting Hardness of AlCoCrCuFeNi High-Entropy Alloys. Crystals. 2025; 15(5):404. https://doi.org/10.3390/cryst15050404
Chicago/Turabian StylePaturi, Uma Maheshwera Reddy, Muhammad Ishtiaq, Pasupuleti Lakshmi Narayana, Anoop Kumar Maurya, Seong-Woo Choi, and Nagireddy Gari Subba Reddy. 2025. "Evaluating Machine Learning Models for Predicting Hardness of AlCoCrCuFeNi High-Entropy Alloys" Crystals 15, no. 5: 404. https://doi.org/10.3390/cryst15050404
APA StylePaturi, U. M. R., Ishtiaq, M., Lakshmi Narayana, P., Maurya, A. K., Choi, S.-W., & Reddy, N. G. S. (2025). Evaluating Machine Learning Models for Predicting Hardness of AlCoCrCuFeNi High-Entropy Alloys. Crystals, 15(5), 404. https://doi.org/10.3390/cryst15050404