Modification of Lithium-Rich Layered Material Li1.5Ni0.17Co0.16Mn0.67O2.5 Coated with Solid Electrolyte (Li2ZrO3)
Abstract
:1. Introduction
2. Materials and Methods
Preparation of Samples
- (a)
- Material characterization
- (b)
- Electrochemical testing of materials
3. Results and Discussion
3.1. Crystal Structure
3.2. Morphology and Surface Composition
4. Electrochemical Performance Analysis
4.1. Initial Charge/Discharge and Coulombic Efficiency
4.2. Rate Performance Analysis
4.3. Cyclic Voltammetric Curve Analysis
4.4. AC Impedance Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.M.; Hsieh, H.Y.; Wu, D.Z.; Tang, H.Y.; Chang-Liao, K.S.; Chi, P.W.; Wu, P.M.; Wu, M.K. Advanced TiO2/Al2O3 Bilayer ALD Coatings for Improved Lithium-Rich Layered Oxide Electrodes. ACS Appl. Mater. Interfaces 2024, 16, 13029–13040. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Y.; Qiao, Y.; Yang, S.; Cheng, X.; Yang, M.; Zhang, J.; Fu, Z. A high-efficient stable surface-prelithiated Li1.2Ni0.13Co0.13Mn0.54O2 cathode enabled by sacrificial lithium nitrides for high-energy-density lithium-ion batteries. Energy Storage Mater. 2024, 66, 103204. [Google Scholar] [CrossRef]
- Zhang, T.; Li, J.T.; Liu, J.; Deng, Y.P.; Wu, Z.G.; Yin, Z.W.; Guo, D.; Huang, L.; Sun, S.G. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Chem. Commun. 2016, 52, 4683–4686. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Hou, R.; Chu, S.; Zhou, H.; Guo, S. Progress on modification strategies of layered lithium-rich cathode materials for high energy lithium-ion batteries. Acta Phys. Chim. Sin. 2023, 39, 2211057. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Fan, J.; Zheng, M.; Dong, Q. The strategy of surface oxygen vacancy stabilization for high-performance lithium-rich cathode materials. J. Electrochem. Soc. 2023, 170, 030517. [Google Scholar] [CrossRef]
- Miao, X.W.; Ni, H.; Zhang, H.; Wang, C.G.; Fang, J.H.; Yang, G. Li2ZrO3-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery. J. Power Sources 2014, 264, 147–154. [Google Scholar] [CrossRef]
- Liu, C.; Wu, M.M.; Zong, Y.H.; Zhang, L.; Yang, Y.; Yang, G. Synthesis and structural properties of xLi2MnO3⋅(1−x)LiNi0.5Mn0.5O2 single crystals towards enhancing reversibility for lithium-ion battery/pouch cells. J. Alloys Compd. 2019, 770, 490–499. [Google Scholar] [CrossRef]
- Huang, J.J.; Liu, H.D.; Hu, T.; Meng, Y.S.; Luo, J. Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation. J. Power Sources 2018, 375, 21–28. [Google Scholar] [CrossRef]
- Guo, Z.X.; Ma, T.F.; Xu, T.T.; Chen, Y.; Yang, G.; Li, Y.H. Amorphous Li2ZrO3 nanoparticles coating Li[Li0·17Mn0·58Ni0.25]O2 cathode material for enhanced rate and cyclic performance in lithium ion storage. Mater. Chem. Phys. 2020, 255, 123593. [Google Scholar] [CrossRef]
- Paknahad, P.; Abasi, A.A.; Glenn, M.; Ghorbanzadeh, M. Improving the Electrochemical Performance of Lithium-Rich Cathode Materials by Vanadium and Titanium Co-Doping Using Solution Combustion Synthesis. J. Electrochem. Energy Convers. Storage 2023, 20, 011006. [Google Scholar] [CrossRef]
- Zhao, B.; Shen, C.; Yan, H.; Xie, J.W.; Liu, X.Y.; Dai, Y.; Zhang, J.J.; Zheng, J.C.; Wu, L.J.; Zhu, Y.M.; et al. Constructing uniform oxygen defect engineering on primary particle level for high-stability lithium-rich cathode materials. Chem. Eng. J. 2023, 465, 142928. [Google Scholar] [CrossRef]
- Liu, Y.X.; Qian, K.; He, J.F.; Chu, X.D.; He, Y.B.; Wu, M.Y.; Li, B.H.; Kang, F.Y. In-situ polymerized lithium polyacrylate (PAALi) as dual-functional lithium source for high-performance layered oxide cathodes. Electrochim. Acta 2017, 249, 43–51. [Google Scholar] [CrossRef]
- Chen, Q.C.; Luo, L.M.; Wang, L.; Xie, T.F.; Dai, S.C.; Yang, Y.T.; Li, Y.P.; Yuan, M.L. Enhanced electrochemical properties of Y2O3-coated-(lithium-manganese)-rich layered oxides as cathode materials for use in lithium-ion batteries. J. Alloys Compd. 2018, 735, 1778–1786. [Google Scholar] [CrossRef]
- Li, H.L.; Zhang, S.C.; Wei, X.; Yang, P.H.; Jian, Z.X.; Meng, J. Glucose-assisted combustion synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials with superior electrochemical performance for lithium-ion batteries. RSC Adv. 2016, 6, 79050–79057. [Google Scholar] [CrossRef]
- Kapylou, A.; Song, J.H.; Missiul, A.; Ham, D.J.; Kim, D.H.; Moon, S.; Park, J.H. Improved Thermal Stability of Lithium-Rich Layered Oxide by Fluorine Doping. ChemPhysChem 2018, 19, 116–122. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Liang, E.Q.; Wang, J.X.; Yu, B.J.; Wang, C.Y.; Li, M.W. Effect of Aluminum Doping on the Stability of Lithium-Rich Layered Oxide Li[Li0.23Ni0.15Mn0.52Al0.10]O2 as Cathode Material. Int. J. Electrochem. Sci. 2017, 12, 9051–9060. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.Y.; Zhao, L.M.; Zhou, Y.; Zhang, F.; He, D.N. Improving the electrochemical performance of lithium-rich oxide layer material with Mg and La co-doping. J. Alloys Compd. 2019, 782, 451–460. [Google Scholar] [CrossRef]
- Pang, S.L.; Zhu, M.; Xu, K.J.; Wang, Y.G.; Yang, G.M.; Xu, J.; Wu, X.; Li, S.W.; Shen, X.Q.; Xi, X.M. The glucose-based treatment: A green and cost-efficient lithium-rich layered oxide modification strategy. Ceram. Int. 2019, 45, 19268–19274. [Google Scholar] [CrossRef]
- Yu, R.Z.; Banis, M.N.; Wang, C.H.; Wu, B.; Huang, Y.; Cao, S.; Li, J.J.; Jamil, S.; Lin, X.T.; Zhao, F.P.; et al. Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides. Energy Storage Mater. 2021, 37, 509–520. [Google Scholar] [CrossRef]
- Zhang, X.P.; Sun, S.W.; Wu, Q.; Wan, N.; Pan, D.; Bai, Y. Improved electrochemical and thermal performances of layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification. J. Power Sources 2015, 282, 378–384. [Google Scholar] [CrossRef]
- Chen, C.; Geng, T.F.; Du, C.Y.; Zuo, P.J.; Cheng, X.Q.; Ma, Y.L.; Yin, G.P. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J. Power Sources 2016, 331, 91–99. [Google Scholar] [CrossRef]
- Lu, C.; Wu, H.; Zhang, Y.; Liu, H.; Chen, B.J.; Wu, N.T.; Wang, S. Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J. Power Sources 2014, 267, 682–691. [Google Scholar] [CrossRef]
- Zhao, E.Y.; Liu, X.F.; Zhao, H. Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization. Chem. Commun. 2015, 51, 9093–9096. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.P.; Zhao, L.Y.; Li, H.Y. Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chin. J. Inorg. Chem. 2024, 40, 1105–1113. [Google Scholar]
- Zhang, X.Y.; Jiang, W.J.; Mauger, A.; Qilu; Gendron, F.; Julien, C.M. Minimization of the cation mixing in Li1+x(NMC)xO2 as cathode material. J. Power Sources 2009, 195, 1292–1301. [Google Scholar]
- Chen, Z.X.; Zhang, Q.J.; Tang, W.J. Ultrahigh Capacity Retention of a Li2ZrO3-Coated Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material through Covalent Interfacial Engineering. ACS Appl. Mater. 2022, 4, 13785–13795. [Google Scholar] [CrossRef]
- Tai, Z.G.; Zhu, W.; Shi, M. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for Lithium-ion batteries. J. Colloid Interface Sci. 2020, 576, 468–475. [Google Scholar] [CrossRef]
- Sun, Y.X.; Zhang, L.J.; Dong, S.D.; Zeng, J.B.; Shen, Y.; Li, X.; Ren, X.F.; Ma, L.X.; Hai, C.X.; Zhou, Y. Improving the electrochemical performances of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 through cooperative doping of Na+ and Mg2+. Electrochim. Acta. 2022, 414, 140169. [Google Scholar] [CrossRef]
- Fang, T.; Zhu, Y.; Hua, J.; Chu, H.; Qiu, S.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L. Enhanced electrochemical properties of sodium-doped lithium-rich manganese-based cathode materials. Mater. Werkst. 2021, 52, 51–59. [Google Scholar] [CrossRef]
- Lei, T.X.; Cao, B.; Fu, W.B.; Shi, X.L. A Li-rich layered oxide cathode with remarkable capacity and prolonged cycle life. Chem. Eng. J. 2024, 490, 151522. [Google Scholar] [CrossRef]
- Han, J.T.; Zheng, H.F.; Hu, Z.Y.; Luo, X.R.; Ma, Y.T.; Xie, Q.S.; Peng, D.L.; Yue, G.H. Facile synthesis of Li-rich layered oxides with spinel-structure decoration as high-rate cathode for lithium-ion batteries. Electrochim. Acta. 2019, 299, 844–852. [Google Scholar] [CrossRef]
- Pechena, L.S.; Makhoninaa, E.V.; Medvedevaa, A.E.; Politova, Y.A.; Rumyantsevb, A.M.; Koshtyal, Y.M. Influence of Tin and Titanium on the Electrochemical Performance of Lithium-Rich Cathode Materials. Inorg. Mater. 2022, 58, 1033–1042. [Google Scholar] [CrossRef]
- Boulineau, A.; Simonin, L.; Colin, J.F.; Bourbon, C.; Patoux, S. First evidence of manganese-nickel segregation and densification upon cycling in Li-Rich layered oxides for lithium batteries. Nano Lett. 2013, 13, 3857–3863. [Google Scholar] [CrossRef] [PubMed]
- Phattharasupakun, N.; Geng, C.X.; Johnson, M.B.; Väli, R.; Sawangphruk, M.; Dahn, J.R. Impact of Cr Doping on the Voltage Fade of Li-Rich Mn-Rich Li1.11Ni0.33Mn0.56O2 and Li1.2Ni0.2Mn0.6O2 Positive Electrode Materials. Electrochem. Soc. 2020, 16, 7160545. [Google Scholar] [CrossRef]
- Zheng, J.M.; Gu, M.; Genc, A.; Xiao, J.; Xu, P.H.; Chen, X.L.; Zhu, Z.H.; Zhao, W.B.; Pullan, L.; Wang, C.M.; et al. Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution. Nano Lett. 2014, 14, 2628–2635. [Google Scholar] [CrossRef]
- Tao, S.; Kong, F.J.; Wu, C.Q.; Su, X.Z.; Xiang, T.; Chen, S.M.; Hou, H.H.; Zhang, L.; Fang, Y.; Wang, Z.C.; et al. Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. J. Alloys Compd. 2017, 705, 413–419. [Google Scholar] [CrossRef]
- Liu, D.M.; Fan, X.J.; Li, Z.H.; Liu, T.; Sun, M.H.; Qian, C.; Lin, M.; Liu, Y.J.; Liang, C.D. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries. Nano Energy 2019, 58, 786–796. [Google Scholar] [CrossRef]
- Wang, D.; Huang, Y.; Huo, Z.Q.; Chen, L. Synthesize and electrochemical characterization of Mg-doped Li rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim. Acta 2013, 107, 461–466. [Google Scholar] [CrossRef]
- Lai, X.W.; Hu, G.R.; Peng, Z.D.; Tong, H.; Lu, Y.; Wang, Y.Z.; Qi, X.Y.; Xue, Z.C.; Huang, Y.; Du, K. Surface structure decoration of high capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode by mixed conductive coating of Li1.4Al0.4Ti1.6(PO4)3 and polyaniline for lithium-ion batteries. J. Power Sources 2019, 431, 144–152. [Google Scholar]
- Li, J.H.; Liu, Z.Q.; Wang, Y.F.; Wang, R.G. Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode. J. Alloys Compd. 2020, 834, 155150. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, D.M.; Wu, H.H.; Fan, X.J.; Dou, A.C.; Zhang, Q.B.; Su, M.R. Improved Cycling Stability of Na-Doped Cathode Materials Li1.2Ni0.2Mn0.6O2 via a Facile Synthesis. ACS Sustain. Chem. Eng. 2018, 6, 13045–13055. [Google Scholar] [CrossRef]
Sample | Lattice | ||||||||
---|---|---|---|---|---|---|---|---|---|
R-3m | C2/m | ||||||||
a [nm] | c [nm] | V [nm] | a [nm] | b [nm] | c [nm] | V [nm] | Rwp [%] | CHI2 | |
LNCM | 0.2843 | 1.4199 | 0.0994 | 0.4919 | 0.8507 | 0.5052 | 0.1993 | 6.05 | 1.75 |
Zr-LNCM-1 | 0.2846 | 1.4212 | 0.0997 | 0.4921 | 0.8522 | 0.5036 | 0.1991 | 5.99 | 1.71 |
Zr-LNCM-3 | 0.2845 | 1.4214 | 0.0996 | 0.4931 | 0.8531 | 0.5015 | 0.1990 | 6.07 | 1.81 |
Zr-LNCM-5 | 0.2845 | 1.4216 | 0.0997 | 0.4931 | 0.8538 | 0.502 | 0.1993 | 6.19 | 2.10 |
Sample | I(003)/I(104) | a [nm] | c [nm] | c/a |
---|---|---|---|---|
LNCM | 1.808 | 0.2843 | 1.4199 | 4.994 |
Zr-LNCM-1 | 1.937 | 0.2846 | 1.4212 | 4.994 |
Zr-LNCM-3 | 1.829 | 0.2845 | 1.4214 | 4.996 |
Zr-LNCM-5 | 1.902 | 0.2845 | 1.4216 | 4.996 |
Sample | Initial Charge Specific Capacity [mAh·g−1] | Initial Discharge Specific Capacity [mAh·g−1] | Irreversible Specific Capacity [mAh·g−1] | Initial Charge and Discharge Efficiency [%] |
---|---|---|---|---|
LNCM | 280.1 | 159.6 | 120.5 | 56.9 |
Zr-LNCM-1 | 269.4 | 169.9 | 99.5 | 63 |
Zr-LNCM-3 | 259.5 | 165.6 | 93.9 | 63.8 |
Zr-LNCM-5 | 251.8 | 154.8 | 97.0 | 61.4 |
Coating Material | First Coulombic Efficiency Change (Before and After Coating) | Capacity Retention (Cycle Number) | Initial Discharge Specific Capacity Change [mAh·g−1] |
---|---|---|---|
Li2ZrO3 | +6.1% | 60% (500 times) | +10.3 |
SnO2 [21] | +0% | 88% (200 times) | +38.2 |
Li2SiO3 [23] | / | 75% (100 times) | −2.5 |
Ga2O3 [24] | +2.3% | 85.6% (200 times) | +7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, B.; Wu, H.; Bator, S.; Li, W.; Wang, X.; Tan, J.; Sun, S.; Cui, J.; Li, Y.; Tian, X. Modification of Lithium-Rich Layered Material Li1.5Ni0.17Co0.16Mn0.67O2.5 Coated with Solid Electrolyte (Li2ZrO3). Crystals 2025, 15, 262. https://doi.org/10.3390/cryst15030262
Liao B, Wu H, Bator S, Li W, Wang X, Tan J, Sun S, Cui J, Li Y, Tian X. Modification of Lithium-Rich Layered Material Li1.5Ni0.17Co0.16Mn0.67O2.5 Coated with Solid Electrolyte (Li2ZrO3). Crystals. 2025; 15(3):262. https://doi.org/10.3390/cryst15030262
Chicago/Turabian StyleLiao, Bo, Han Wu, Siqin Bator, Wei Li, Xiaotao Wang, Jinyu Tan, Shixiang Sun, Jingwen Cui, Yingqun Li, and Xiao Tian. 2025. "Modification of Lithium-Rich Layered Material Li1.5Ni0.17Co0.16Mn0.67O2.5 Coated with Solid Electrolyte (Li2ZrO3)" Crystals 15, no. 3: 262. https://doi.org/10.3390/cryst15030262
APA StyleLiao, B., Wu, H., Bator, S., Li, W., Wang, X., Tan, J., Sun, S., Cui, J., Li, Y., & Tian, X. (2025). Modification of Lithium-Rich Layered Material Li1.5Ni0.17Co0.16Mn0.67O2.5 Coated with Solid Electrolyte (Li2ZrO3). Crystals, 15(3), 262. https://doi.org/10.3390/cryst15030262