Effects of Zr Alloying on Microstructure Evolution and Mechanical Properties of CoCrNi Medium Entropy Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Analysis
Elements | Atomic Radius | ||||
---|---|---|---|---|---|
Co | Cr | Ni | Zr | ||
Co | / | −4 | 0 | −41 | 1.28 |
Cr | / | −7 | −12 | 1.25 | |
Ni | / | −49 | 1.24 | ||
Zr | / | 1.6 |
3.2. Microstructural Evolution
3.3. Mechanical Properties
4. Conclusions
- (1)
- The addition of the Zr element into the CoCrNi MEAs modifies the initial phase constitution, resulting in the formation of an ordered Zr-rich Laves phase dispersed within an FCC solid solution matrix.
- (2)
- With increasing Zr content, the (CoCrNi)100−xZrx MEAs exhibit progressively higher strength but significantly reduced ductility. Among this series, the Zr3 MEA achieves a relatively balanced combination of strength and ductility.
- (3)
- The gradual increase in Zr content leads to a progressively higher volume fraction of the Zr-rich Laves phase, which primarily accounts for the enhancement of hardness and compressive yield strength, as well as the reduction in compression fracture strain.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Li, W.; Xie, D.; Li, D.; Zhang, Y.; Gao, Y.; Liaw, P.K. Mechanical behavior of high-entropy alloys. Prog. Mater. Sci. 2021, 118, 100777. [Google Scholar]
- Jien-Wei, Y. Recent progress in high entropy alloys. Ann. Chim. Sci. Mat. 2006, 31, 633–648. [Google Scholar]
- Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014, 81, 428–441. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Thurston, K.V.; Bei, H.; Wu, Z.; George, E.P.; Ritchie, R.O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602. [Google Scholar] [CrossRef]
- Stepanov, N.; Shaysultanov, D.; Tikhonovsky, M.; Zherebtsov, S. Structure and high temperature mechanical properties of novel non-equiatomic Fe–(Co, Mn)–Cr–Ni–Al–(Ti) high entropy alloys. Intermetallics 2018, 102, 140–151. [Google Scholar] [CrossRef]
- Lin, D.; Xi, X.; Li, X.; Hu, J.; Xu, L.; Han, Y.; Zhang, Y.; Zhao, L. High-temperature mechanical properties of FeCoCrNi high-entropy alloys fabricated via selective laser melting. Mater. Sci. Eng. A 2022, 832, 142354. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Dai, H.; Fujiwara, H.; Chen, X.; Ameyama, K. Enhanced corrosion resistance of CoCrFeMnNi high entropy alloy using heterogeneous structure design. Corros. Sci. 2022, 209, 110761. [Google Scholar] [CrossRef]
- Lin, C.; Yao, Y. Corrosion-resistant coating based on high-entropy alloys. Metals 2023, 13, 205. [Google Scholar] [CrossRef]
- Yan, X.; Guo, H.; Yang, W.; Pang, S.; Wang, Q.; Liu, Y.; Liaw, P.K.; Zhang, T. Al0.3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties. J. Alloy Compd. 2021, 860, 158436. [Google Scholar] [CrossRef]
- Ren, J.T.; Chen, L.; Wang, H.Y.; Yuan, Z.Y. High-entropy alloys in electrocatalysis: From fundamentals to applications. Chem. Soc. Rev. 2023, 52, 8319–8373. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Yu, Y.; Zhu, G.; Sun, B.; He, R.; Cabot, A.; Sun, Z. High entropy alloy electrocatalysts. J. Energy Chem. 2024, 99, 335–364. [Google Scholar] [CrossRef]
- Zou, J.-P.; Luo, X.-M.; Zhang, B.; Chen, H.-L.; Luo, Y.-W.; Yang, W.-K.; Liu, G.-D.; Zhu, X.-F.; Zhang, G.-P. Achieving ultrahigh fatigue resistance of Al15(CoCrNi)85 medium-entropy alloy with deformable multicomponent BCC phases. Mater. Sci. Eng. A 2024, 891, 145985. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, H.; Wang, M.; Lu, Y.; Chen, X.; Ren, Z. Enhanced strength-ductility synergy in a Ta-doped CoCrNi medium-entropy alloy with a dual heterogeneous structure. Mater. Sci. Eng. A 2022, 860, 144293. [Google Scholar] [CrossRef]
- He, J.; Wang, H.; Wu, Y.; Liu, X.; Mao, H.; Nieh, T.; Lu, Z. Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics 2016, 79, 41–52. [Google Scholar] [CrossRef]
- Liu, W.; Lu, Z.; He, J.; Luan, J.; Wang, Z.; Liu, B.; Liu, Y.; Chen, M.; Liu, C. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 2016, 116, 332–342. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Zhang, J.; Xue, H.; Liu, G.; Sun, J. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping. J. Mater. Sci. Technol. 2021, 87, 184–195. [Google Scholar] [CrossRef]
- Lee, D.; Agustianingrum, M.P.; Park, N.; Tsuji, N. Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy. J. Alloys Compd. 2019, 800, 372–378. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, T.; Tong, Y.; Wang, J.; Luan, J.; Jiao, Z.; Chen, D.; Yang, Y.; Hu, A.; Liu, C. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017, 138, 72–82. [Google Scholar] [CrossRef]
- Zhang, Q.; Qiao, J.; Zhao, Y.; Jang, J.-I.; Ramamurty, U. Multimodality of critical strength for incipient plasticity in L12-precipitated (CoCrNi)94Al3Ti3 medium-entropy alloy: Coherent interface-facilitated dislocation nucleation. Acta Mater. 2025, 288, 120826. [Google Scholar] [CrossRef]
- Lu, W.; Luo, X.; Yang, Y.; Huang, B. Effects of Nb additions on structure and mechanical properties evolution of CoCrNi medium-entropy alloy. Mater. Express 2019, 9, 291–298. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, Z.; Tong, Y.; Hu, Y.; Ji, X.; Yang, L.; Wang, K.; Fang, J.; Chen, H.; Liang, X. Introduction of nanotwins into nanoprecipitations strengthened CoCrNiMo0.2 alloy to achieve strength and ductility trade-off: A comparative research. J. Mater. Sci. Technol. 2023, 156, 172–182. [Google Scholar] [CrossRef]
- Xu, D.; Wang, X.; Yu, F.; Wang, M.; Lu, Y. Ta-doping induces heterogeneous microstructures in CoCrNi medium-entropy alloy to achieve excellent strength-ductility combination. Mater. Sci. Eng. A 2023, 885, 145600. [Google Scholar] [CrossRef]
- Jiao, W.; Miao, J.; Lu, Y.; Chen, X.; Ren, Z.; Yin, G.; Li, T. Designing CoCrFeNi-M (M = Nb, Ta, Zr, and Hf) eutectic high-entropy alloys via a modified simple mixture method. J. Alloys Compd. 2023, 941, 168975. [Google Scholar] [CrossRef]
- Huo, W.; Zhou, H.; Fang, F.; Xie, Z.; Jiang, J. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater. Des. 2017, 134, 226–233. [Google Scholar] [CrossRef]
- Ren, H.; Chen, R.R.; Gao, X.F.; Liu, T.; Qin, G.; Wu, S.P.; Guo, J.J. Development of wear-resistant dual-phase high-entropy alloys enhanced by C15 Laves phase. Mater. Charact. 2023, 200, 112879. [Google Scholar] [CrossRef]
- Rathod, B.D.S.; Gholizadeh, R.; Park, M.-H.; Yoshida, S.; Tsuji, N. Effect of Zr micro-alloying on microstructure refinement and mechanical property of CoCrNi medium-entropy alloy processed by high-pressure torsion and subsequent annealing. J. Mater. Sci. 2023, 59, 5736–5753. [Google Scholar] [CrossRef]
- Qi, W.; Wang, W.; Yang, X.; Xie, L.; Zhang, J.; Li, D.; Zhang, Y. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy. J. Mater. Sci. Technol. 2022, 109, 76–85. [Google Scholar] [CrossRef]
- Jiang, H.; Han, K.; Gao, X.; Lu, Y.; Cao, Z.; Gao, M.C.; Hawk, J.A.; Li, T. A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater. Des. 2018, 142, 101–105. [Google Scholar] [CrossRef]
- Troparevsky, M.C.; Morris, J.R.; Kent, P.R.C.; Lupini, A.R.; Stocks, G.M. Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys. Phys. Rev. X 2015, 5, 011041. [Google Scholar] [CrossRef]
- Guo, S.; Hu, Q.; Ng, C.; Liu, C.T. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 2013, 41, 96–103. [Google Scholar] [CrossRef]
- Troparevsky, M.C.; Morris, J.R.; Daene, M.; Wang, Y.; Lupini, A.R.; Stocks, G.M. Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys. JOM 2015, 67, 2350–2363. [Google Scholar] [CrossRef]
- Moriguchi, I.; Kawasaki, K.; Kawakatsu, T. The effects of size polydispersity in nearly hard sphere colloids. J. Phys. II 1993, 3, 1179–1184. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans. JIM 2000, 41, 1372–1378. [Google Scholar] [CrossRef]
Alloys | Region | Co | Cr | Ni | Zr | fLaves |
---|---|---|---|---|---|---|
Zr1 | Nominal | 33 | 33 | 33 | 1 | 11.8 |
DR | 33.73 | 34.48 | 31.79 | 0 | ||
IR | 19.13 | 6.66 | 48.3 | 25.91 | ||
Zr2 | Nominal | 32.66 | 32.67 | 32.67 | 2 | 16.1 |
DR | 35.46 | 33.99 | 30.43 | 0.12 | ||
IR | 21.36 | 6.09 | 46.88 | 25.67 | ||
Zr3 | Nominal | 32.33 | 32.33 | 32.34 | 3 | 22.7 |
DR | 34.85 | 39.54 | 25.5 | 0.11 | ||
IR | 20.48 | 5.51 | 48.7 | 25.31 | ||
Zr4 | Nominal | 32 | 32 | 32 | 4 | 36.1 |
DR | 36.18 | 35.75 | 27.97 | 0.1 | ||
IR | 18.99 | 3.66 | 48.27 | 29.08 | ||
Zr5 | Nominal | 31.66 | 31.67 | 31.67 | 5 | 43.2 |
DR | 36.24 | 37.53 | 26.2 | 0.03 | ||
IR | 17.05 | 6.92 | 50.6 | 25.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Gong, Z.; Li, D.; Wang, X.; Su, Y.; Ma, T.; Liu, B.; Zhang, B. Effects of Zr Alloying on Microstructure Evolution and Mechanical Properties of CoCrNi Medium Entropy Alloy. Crystals 2025, 15, 258. https://doi.org/10.3390/cryst15030258
Li A, Gong Z, Li D, Wang X, Su Y, Ma T, Liu B, Zhang B. Effects of Zr Alloying on Microstructure Evolution and Mechanical Properties of CoCrNi Medium Entropy Alloy. Crystals. 2025; 15(3):258. https://doi.org/10.3390/cryst15030258
Chicago/Turabian StyleLi, Ao, Zurong Gong, Dong Li, Xiaohong Wang, Yunting Su, Tengfei Ma, Bin Liu, and Baochen Zhang. 2025. "Effects of Zr Alloying on Microstructure Evolution and Mechanical Properties of CoCrNi Medium Entropy Alloy" Crystals 15, no. 3: 258. https://doi.org/10.3390/cryst15030258
APA StyleLi, A., Gong, Z., Li, D., Wang, X., Su, Y., Ma, T., Liu, B., & Zhang, B. (2025). Effects of Zr Alloying on Microstructure Evolution and Mechanical Properties of CoCrNi Medium Entropy Alloy. Crystals, 15(3), 258. https://doi.org/10.3390/cryst15030258