Intrinsic Defect-Induced Local Semiconducting-to-Metallic Regions Within Monolayer 1T-TiS2 Displayed by First-Principles Calculations and Scanning Tunneling Microscopy
Abstract
1. Introduction
2. Methodology
3. Density Functional Calculations
4. Scanning Tunneling Microscopy
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Kim, J.H.; Kang, J. Chalcogen Vacancy Engineering of Two-Dimensional Transition Metal Dichalcogenides for Electronic Applications. ACS Appl. Nano Mater. 2024, 7, 26377–26396. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, L.; Yu, H.; Liao, Q.; Kang, Z.; Zhang, Z.; Zhang, Y. Single-Atom Vacancy Doping in Two-Dimensional Transition Metal Dichalcogenides. Acc. Mater. Res. 2021, 2, 655–668. [Google Scholar] [CrossRef]
- Hawkins, C.G.; Whittaker-Brooks, L. Controlling Sulfur Vacancies in TiS2–x Cathode Insertion Hosts via the Conversion of TiS3 Nanobelts for Energy-Storage Applications. ACS Appl. Nano Mater. 2018, 1, 851–859. [Google Scholar] [CrossRef]
- Chen, K.; Song, M.; Sun, Y.Y.; Xu, H.; Qi, D.C.; Su, Z.; Gao, X.; Xu, Q.; Hu, J.; Zhu, J.; et al. Defects controlled doping and electrical transport in TiS2 single crystals. Appl. Phys. Lett. 2020, 116, 121901. [Google Scholar] [CrossRef]
- Loh, L.; Zhang, Z.; Bosman, M.; Eda, G. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 2021, 14, 1668–1681. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, K.; Pan, F.; Zhou, C.; Zhou, F.; Chai, Y. Doping, Contact and Interface Engineering of Two-Dimensional Layered Transition Metal Dichalcogenides Transistors. Adv. Funct. Mater. 2017, 27, 1603484. [Google Scholar] [CrossRef]
- Sun, K.; Fu, M.; Xie, Z.; Su, D.; Zhong, H.; Bai, J.; Dooryhee, E.; Gan, H. Improvement of Li-S battery electrochemical performance with 2D TiS2 additive. Electrochim. Acta 2018, 292, 779–788. [Google Scholar] [CrossRef]
- Chen, S.; Yang, L.; Wang, D. Photoelectric Properties of Single Layer TiS2 Modified by Non-Metal Doping. Russ. J. Phys. Chem. A 2022, 96, 3031–3037. [Google Scholar] [CrossRef]
- Chen, H.; Yin, J.; Yang, J.; Zhang, X.; Liu, M.; Jiang, Z.; Wang, J.; Sun, Z.; Guo, T.; Liu, W.; et al. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt. Lett. 2017, 42, 4279–4282. [Google Scholar] [CrossRef]
- Selamneni, V.; Sahatiya, P. Mixed dimensional Transition Metal Dichalcogenides (TMDs) vdW Heterostructure based Photodetectors: A review. Microelectron. Eng. 2023, 269, 111926. [Google Scholar] [CrossRef]
- Zhan, D.; Yan, J.; Lai, L.; Ni, Z.; Liu, L.; Shen, Z. Engineering the Electronic Structure of Graphene. Adv. Mater. 2012, 24, 4055–4069. [Google Scholar] [CrossRef]
- Partoens, B.; Peeters, F.M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. 2006, 74, 075404. [Google Scholar] [CrossRef]
- Bostwick, A.; McChesney, J.; Ohta, T.; Rotenberg, E.; Seyller, T.; Horn, K. Experimental studies of the electronic structure of graphene. Prog. Surf. Sci. 2009, 84, 380–413. [Google Scholar] [CrossRef]
- Chandrachud, P.; Pujari, B.S.; Haldar, S.; Sanyal, B.; Kanhere, D.G. A systematic study of electronic structure from graphene to graphane. J. Phys. Condens. Matter 2010, 22, 465502. [Google Scholar] [CrossRef] [PubMed]
- Shallcross, S.; Sharma, S.; Kandelaki, E.; Pankratov, O.A. Electronic structure of turbostratic graphene. Phys. Rev. 2010, 81, 165105. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 1–15. [Google Scholar] [CrossRef]
- Jaiswal, K.; Girish, Y.R.; De, M. Influence of a Tunable Band Gap on Photoredox Catalysis by Various Two-Dimensional Transition-Metal Dichalcogenides. ACS Appl. Nano Mater. 2020, 3, 84–93. [Google Scholar] [CrossRef]
- Ajayan, P.; Kim, P.; Banerjee, K. Two-dimensional van der Waals materials. Phys. Today 2016, 69, 38–44. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed]
- Ryou, J.; Kim, Y.S.; Kc, S.; Cho, K. Monolayer MoS2 bandgap modulation by dielectric environments and tunable bandgap transistors. Sci. Rep. 2016, 6, 29184. [Google Scholar] [CrossRef] [PubMed]
- Rojaee, R.; Shahbazian-Yassar, R. Two-Dimensional Materials to Address the Lithium Battery Challenges. ACS Nano 2020, 14, 2628–2658. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Torsi, R.; Younas, R.; Hinkle, C.L.; Rigosi, A.F.; Hill, H.M.; Zhang, K.; Huang, S.; Shuck, C.E.; Chen, C.; et al. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS Nano 2023, 17, 9694–9747. [Google Scholar] [CrossRef]
- Chen, J.; Zhong, J.; Liu, S.; Wang, Y.; Hou, J.; Duan, Q. Density Functional Theory Studies on Tuning p-Band Electronic Structures of TiS2-Based Single-Atom Catalysts for Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Appl. Nano Mater. 2024, 7, 15344–15353. [Google Scholar] [CrossRef]
- Gu, Z.; Xie, X.; Hao, B.; Zhu, L. Study on the mechanism of enhancing photocurrent in TiS2 photodetector by vacancy- and substitution-doping. Appl. Surf. Sci. 2025, 685, 161956. [Google Scholar] [CrossRef]
- Sakhuja, N.; Jha, R.K.; Chaurasiya, R.; Dixit, A.; Bhat, N. 1T-Phase Titanium Disulfide Nanosheets for Sensing H2S and O2. ACS Appl. Nano Mater. 2020, 3, 3382–3394. [Google Scholar] [CrossRef]
- Coelho, P.M. Magnetic doping in transition metal dichalcogenides. J. Phys. Condens. Matter 2024, 36, 203001. [Google Scholar] [CrossRef]
- Karthikeyan, J.; Komsa, H.P.; Batzill, M.; Krasheninnikov, A.V. Which Transition Metal Atoms Can Be Embedded into Two-Dimensional Molybdenum Dichalcogenides and Add Magnetism? Nano Lett. 2019, 19, 4581–4587. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Shen, D.; Zhang, Z.; Lu, P.; Hossain, M.; Li, J.; Li, B.; Duan, X. 2D Metallic Transition-Metal Dichalcogenides: Structures, Synthesis, Properties, and Applications. Adv. Funct. Mater. 2021, 31, 2105132. [Google Scholar] [CrossRef]
- Huang, X.; Tang, J.; Luo, B.; Knibbe, R.; Lin, T.; Hu, H.; Rana, M.; Hu, Y.; Zhu, X.; Gu, Q.; et al. Sandwich-like Ultrathin TiS2 Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithium-Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1901872. [Google Scholar] [CrossRef]
- Huckaba, A.J.; Gharibzadeh, S.; Ralaiarisoa, M.; Roldán-Carmona, C.; Mohammadian, N.; Grancini, G.; Lee, Y.; Amsalem, P.; Plichta, E.J.; Koch, N.; et al. Low-Cost TiS2 as Hole-Transport Material for Perovskite Solar Cells. Small Methods 2017, 1, 1700250. [Google Scholar] [CrossRef]
- Alias, N.; Ali Umar, A.; Malek, N.A.A.; Liu, K.; Li, X.; Abdullah, N.A.; Rosli, M.M.; Abd Rahman, M.Y.; Shi, Z.; Zhang, X.; et al. Photoelectrical Dynamics Uplift in Perovskite Solar Cells by Atoms Thick 2D TiS2 Layer Passivation of TiO2 Nanograss Electron Transport Layer. ACS Appl. Mater. Interfaces 2021, 13, 3051–3061. [Google Scholar] [CrossRef]
- Mahuli, N.; Sarkar, S.K. Atomic layer deposition of titanium sulfide and its application in extremely thin absorber solar cells. J. Vac. Sci. Technol. A 2014, 33, 01A150. [Google Scholar] [CrossRef]
- Fathi-Hafshejani, P.; Tinker, H.B.; Freel, K.; Mahjouri-Samani, M.; Hasim, S. Effects of TiS2 on Inhibiting Candida albicans Biofilm Formation and Its Compatibility with Human Gingival Fibroblasts in Titanium Implants. ACS Appl. Bio Mater. 2023, 6, 436–444. [Google Scholar] [CrossRef]
- Li, X.; Ding, X.; Li, Y.; Wang, L.; Fan, J. A TiS2 nanosheet enhanced fluorescence polarization biosensor for ultra-sensitive detection of biomolecules. Nanoscale. 2016, 8, 9852–9860. [Google Scholar] [CrossRef] [PubMed]
- Frazer, E.; Phang, S. Titanium disulphide as a cathode material in lithium batteries—A review. J. Power Sources 1981, 6, 307–317. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, H.; Han, L.; Zhang, Y.; Ding, Y.; Shen, S.; Chen, B.; Ni, M. Advances in TiS2 for energy storage, electronic devices, and catalysis: A review. Prog. Nat. Sci. Mater. Int. 2023, 33, 133–150. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, Y.; Bai, L.; Shen, B.; Wang, X.; Zou, Y.; Tian, J. Evolution of crystal structures and electronic properties for TiS2 at high pressure. J. Alloys Compd. 2018, 757, 448–454. [Google Scholar] [CrossRef]
- Yu, Y.G.; Ross, N.L. First-principles study on thermodynamic properties and phase transitions in TiS2. J. Phys. Condens. Matter 2011, 23, 055401. [Google Scholar] [CrossRef]
- Yu, F.; Sun, J.X.; Zhou, Y.H. The high-pressure phase transition of TiS2 from first-principles calculations. Solid State Sci. 2010, 12, 1786–1790. [Google Scholar] [CrossRef]
- Aksoy, R.; Selvi, E.; Knudson, R.; Ma, Y. A high pressure X-ray diffraction study of titanium disulfide. J. Phys. Condens. Matter 2008, 21, 025403. [Google Scholar] [CrossRef]
- Tanwar, P.; Paliwal, U.; Joshi, K.; Kumar, J. First-principles study of structural, electronic and vibrational properties of bulk and monolayer TiS2. J. Phys. Chem. Solids 2023, 179, 111382. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, Z.; Xia, W.; Ming, C.; Han, Y.; Cao, L.; Lu, J.; Zhang, P.; Zhang, S.; Xu, H.; et al. Semimetal or Semiconductor: The Nature of High Intrinsic Electrical Conductivity in TiS2. J. Phys. Chem. Lett. 2019, 10, 6996–7001. [Google Scholar] [CrossRef]
- Stoliaroff, A.; Latouche, C.; Jobic, S. Versatile electrical behavior of 1T-TiS2 elucidated from a theoretical study. Phys. Rev. B 2019, 99, 165122. [Google Scholar] [CrossRef]
- Stoliaroff, A.; Jobic, S.; Latouche, C. Optoelectronic Properties of TiS2: A Never Ended Story Tackled by Density Functional Theory and Many-Body Methods. Inorg. Chem. 2019, 58, 1949–1957. [Google Scholar] [CrossRef]
- Tian, R.; Liu, C.; Zhang, G.; Wu, A.; Yao, M.; Huang, H. Point defects-induced adsorption and diffusion of lithium on monolayer titanium disulfide: A first-principles study. Appl. Surf. Sci. 2021, 553, 149448. [Google Scholar] [CrossRef]
- QuantumATK version R-2020.09, Synopsys QuantumATK. 2024. Available online: https://www.synopsys.com/quantumatk (accessed on 25 February 2025).
- Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Khomyakov, P.A.; Vej-Hansen, U.G.; et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 2019, 32, 015901. [Google Scholar] [CrossRef] [PubMed]
- Smidstrup, S.; Stradi, D.; Wellendorff, J.; Khomyakov, P.A.; Vej-Hansen, U.G.; Lee, M.E.; Ghosh, T.; Jónsson, E.; Jónsson, H.; Stokbro, K. First-principles Green’s-function method for surface calculations: A pseudopotential localized basis set approach. Phys. Rev. B 2017, 96, 195309. [Google Scholar] [CrossRef]
- Van Setten, M.; Giantomassi, M.; Bousquet, E.; Verstraete, M.J.; Hamann, D.R.; Gonze, X.; Rignanese, G.M. The PseudoDojo: Training and Grading a 85 Element Optimized Norm-Conserving Pseudopotential Table. Comput. Phys. Commun. 2018, 226, 39. [Google Scholar] [CrossRef]
- Schlipf, M.; Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 2015, 196, 36–44. [Google Scholar] [CrossRef]
- Li, G.; Yao, K.; Gao, G. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures. Nanotechnology 2017, 29, 015204. [Google Scholar] [CrossRef] [PubMed]
- Zeb, J.; Zhao, X.; Ullah, S.; Menezes, M.G.; Zhang, W. Tunable optoelectronic properties in multilayer 1T-TiS2: The effects of strain and an external electric field. J. Mater. Sci. 2021, 56, 6891–6902. [Google Scholar] [CrossRef]
- Liu, H.; Yang, L.; Zhao, Y.; Sun, S.; Wei, X. Photoelectric and Magnetic Variation of Transition Metal-Doped Monolayer TiS2: A First-Principles Calculation. J. Supercond. Nov. Magn. 2024, 37, 639–655. [Google Scholar] [CrossRef]
- Freysoldt, C.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Kresse, G.; Janotti, A.; Van de Walle, C.G. First-principles calculations for point defects in solids. Rev. Mod. Phys. 2014, 86, 253–305. [Google Scholar] [CrossRef]
- Tersoff, J.; Hamann, D.R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805–813. [Google Scholar] [CrossRef]
- Amzallag, E.; Martinez, H.; Baraille, I.; Rérat, M.; Loudet, M.; Gonbeau, D. Ti vacancies on the (001) surface of TiS2 detected by scanning tunneling microscopy: A combined experimental and theoretical study. Solid State Sci. 2007, 9, 594–599. [Google Scholar] [CrossRef]
Defect | (eV) |
---|---|
Ti-Int1 | −7.064 |
Ti-Int2 | −7.202 |
Ti-Sub | 0.417 |
Ti-Vac | 15.313 |
S-Ada1 | −2.793 |
S-Ada2 | −2.826 |
S-Sub | 9.116 |
S-Vac | 6.296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keeney, P.J.; Coelho, P.M.; Haraldsen, J.T. Intrinsic Defect-Induced Local Semiconducting-to-Metallic Regions Within Monolayer 1T-TiS2 Displayed by First-Principles Calculations and Scanning Tunneling Microscopy. Crystals 2025, 15, 243. https://doi.org/10.3390/cryst15030243
Keeney PJ, Coelho PM, Haraldsen JT. Intrinsic Defect-Induced Local Semiconducting-to-Metallic Regions Within Monolayer 1T-TiS2 Displayed by First-Principles Calculations and Scanning Tunneling Microscopy. Crystals. 2025; 15(3):243. https://doi.org/10.3390/cryst15030243
Chicago/Turabian StyleKeeney, P. J., P. M. Coelho, and J. T. Haraldsen. 2025. "Intrinsic Defect-Induced Local Semiconducting-to-Metallic Regions Within Monolayer 1T-TiS2 Displayed by First-Principles Calculations and Scanning Tunneling Microscopy" Crystals 15, no. 3: 243. https://doi.org/10.3390/cryst15030243
APA StyleKeeney, P. J., Coelho, P. M., & Haraldsen, J. T. (2025). Intrinsic Defect-Induced Local Semiconducting-to-Metallic Regions Within Monolayer 1T-TiS2 Displayed by First-Principles Calculations and Scanning Tunneling Microscopy. Crystals, 15(3), 243. https://doi.org/10.3390/cryst15030243