Mechanisms and Applications of Impurity-Driven Surface Modification in Magnesium Sulfate Crystallization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimentai Procedure
2.3. Molecular Dynamics Simulation
3. Results
3.1. Morphology and Composition of Cryogenic Crystallization Products
3.2. Effects of Impurity Ions on Crystallization Product Morphology and Composition
3.3. Effects of Impurity Ions on the Structure of Saturated Solutions
3.4. Competitive Modification Effects of Impurities During Cryogenic Crystallization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pojnar, K.; Pilch-Pitera, B. Correlation between the Chemical Structure of (Meth) Acrylic Monomers and the Properties of Powder Clear Coatings Based on the Polyacrylate Resins. Materials 2024, 17, 1655. [Google Scholar] [CrossRef] [PubMed]
- Rachtanapun, P.; Sawangrat, C.; Kanthiya, T.; Thipchai, P.; Kaewapai, K.; Suhr, J.; Worajittiphon, P.; Tanadchangsaeng, N.; Wattanachai, P.; Jantanasakulwong, K. Effect of Plasma Treatment on Bamboo Fiber-Reinforced Epoxy Composites. Polymers 2024, 16, 938. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Shang, J.; Abdurexit, A.; Jamal, R.; Abdiryim, T.; Li, Z.; You, J.; Wei, J.; Su, E.; Huang, L. Effect of Chemical Treatment of Cotton Stalk Fibers on the Mechanical and Thermal Properties of PLA/PP Blended Composites. Polymers 2024, 16, 1641. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Cui, Z.; Yan, Y. Research Status of Surface Modification Technology for Medical Magnesium Alloy. Guangdong Chem. Ind. 2023, 50, 104–106. [Google Scholar]
- Zhao, Y.; Yang, X.; Cheng, Z.; Lau, C.H.; Ma, J.; Shao, L. Surface manipulation for prevention of migratory viscous crude oil fouling in superhydrophilic membranes. Nat. Commun. 2023, 14, 2679. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, H.; Ma, L.; Lu, M.; Wu, C.; Liu, Q.; Yu, X.; Liu, H.; Ye, X.; Ma, Z.; et al. Basic magnesium sulfate@TiO2 composite for efficient adsorption and photocatalytic degradation of 4-dodecylmorpholine in brine. Sci. Rep. 2024, 14, 9315. [Google Scholar] [CrossRef]
- Kékicheff, P.; Heinrich, B.; Hemmerle, A.; Fontaine, P.; Lambour, C.; Beyer, N.; Favier, D.; Egele, A.; Emelyanenko, K.A.; Modin, E.; et al. Condensation or Desublimation: Nanolevel Structural Look on Two Frost Formation Pathways on Surfaces with Different Wettabilities. ACS Nano 2024, 18, 15067–15083. [Google Scholar] [CrossRef]
- Armstrong, T.; Schmid, J.; Niemelä, J.P.; Utke, I.; Schutzius, T.M. Nanostructured Surfaces Enhance Nucleation Rate of Calcium Carbonate. Small 2024, 20, 2402690. [Google Scholar] [CrossRef]
- Hu, Y.J.; Knope, K.E.; Skanthakumar, S.; Kanatzidis, M.G.; Mitchell, J.F.; Soderholm, L. Understanding the role of aqueous solution speciation and its application to the directed syntheses of complex oxidic Zr chlorides and sulfates. J. Am. Chem. Soc. 2013, 135, 14240–14248. [Google Scholar] [CrossRef]
- Kollias, L.; Rousseau, R.; Glezakou, V.A.; Salvalaglio, M. Understanding Metal-Organic Framework Nucleation from a Solution with Evolving Graphs. J. Am. Chem. Soc. 2022, 144, 11099–11109. [Google Scholar] [CrossRef]
- Sui, Y.; Scida, A.M.; Li, B.; Chen, C.; Fu, Y.; Fang, Y.; Greaney, P.A.; Popp, T.M.O.; Jiang, D.; Fang, C.; et al. The Influence of Ions on the Electrochemical Stability of Aqueous Electrolytes. Angew. Chem. Int. Ed. Engl. 2024, 63, e202401555. [Google Scholar] [CrossRef] [PubMed]
- Schiele, S.A.; Haider, T.; Briesen, H. Growth of broken crystals tracked in 4D using X-ray computed tomography and its influence on impurity incorporation. Sci. Rep. 2024, 14, 21999. [Google Scholar] [CrossRef] [PubMed]
- Dobberschütz, S.; Nielsen, M.R.; Sand, K.K.; Civioc, R.; Bovet, N.; Stipp, S.L.S.; Andersson, M.P. The mechanisms of crystal growth inhibition by organic and inorganic inhibitors. Nat. Commun. 2018, 9, 1578. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, L.; Steendam, R.R.E.; Blijlevens, M.A.R.; Pishnamazi, M.; Frawley, P.J. Influence of impurities on the solubility, nucleation, crystallization, and compressibility of paracetamol. Cryst. Growth Des. 2019, 19, 4193–4201. [Google Scholar] [CrossRef]
- Su, Y.; Li, S.; Li, X.; Zhou, J.Y.; Chauhan, V.P.; Li, M.; Su, Y.H.; Liu, C.M.; Ren, Y.F.; Yin, W.; et al. Tartronic Acid as a Potential Inhibitor of Pathological Calcium Oxalate Crystallization. Adv. Sci. 2024, 11, e2400642. [Google Scholar] [CrossRef]
- Seydioglu, T.; Kurnaz, S.; Tokeşer, E.A.; Yildirim, G.; Ozturk, O. Effect of foreign impurity and growth temperatures on hexagonal structure and fundamental properties of ZnO nanorods. Microsc. Res. Tech. 2024, 87, 2687–2700. [Google Scholar] [CrossRef]
- Jia, H.; Yang, W.; Zhang, X.; Zhou, X.; Qiu, H.; Qin, H.; Lu, S.; Bian, L. Effects and mechanisms of In surfactant on high Al-content AlGaN grown by plasma-assisted molecular beam epitaxy. Opt. Express 2022, 30, 1782–1792. [Google Scholar] [CrossRef]
- Wu, P.; Liu, J.; Li, F.; Ren, X.; Tian, A.; Zhou, W.; Zhang, F.; Li, X.; Zhou, B.; Ikeda, M.; et al. Effects of Miscut on Step Instabilities in Homo-Epitaxially Grown GaN. Nanomaterials 2024, 14, 748. [Google Scholar] [CrossRef]
- Widjaja, T.; Altway, A.; Nurkhamidah, S.; Rahmawati, Y.; Meka, W.; Alifatul, A.; Hartanto, D.; Sari, R. Effectiveness study of recrystallisation method in pharmaceutical salt production from processed salt with zero waste concept. Heliyon 2024, 10, e30472. [Google Scholar] [CrossRef]
- Kırboğa, S.; Mualla, Ö. The role of vinyl sulfonic acid homopolymer in calcium oxalate crystallization. Colloids Surf. B Biointerfaces 2010, 78, 357–362. [Google Scholar] [CrossRef]
- de Vries, S.A.; Goedtkindt, P.; Bennett, S.L.; Huisman, W.J.; Zwanenburg, M.J.; Smilgies, D.-M.; De Yoreo, J.J.; van Enckevort, W.J.P.; Bennema, P.; Vlieg, E. Surface Atomic Structure of KDP Crystals in Aqueous Solution: An Explanation of the Growth Shape. Phys. Rev. Lett. 1998, 80, 2229–2232. [Google Scholar] [CrossRef]
- Glikin, A.E. Polymineral-Metasomatic Crystallogenesis; Springer Nature: Dordrecht, GX, Netherlands, 2009; ISBN 978-1-4020-8982-4. [Google Scholar]
- Buchner, R.; Rudolph, W.W.; Hefter, G.T. Comment on “Dynamic ion association in aqueous solutions of sulfate” [J. Chem. Phys. 123, 034508 (2005)]. J. Chem. Phys. 2006, 124, 247101. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, D.; Hamaguchi, H.O. Ion association dynamics in aqueous solutions of sulfate salts as studied by Raman band shape analysis. J. Chem. Phys. 2005, 123, 034508. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, W.W.; Irmer, G.; Hefter, G.T. Raman spectroscopic investigation of speciation in MgSO4(aq). Phys. Chem. Chem. Phys. 2003, 5, 5253–5261. [Google Scholar] [CrossRef]
- Dos Santos, P.F.; Lassin, A.; Gaona, X.; Garbev, K.; Altmaier, M.; Madé, B. Thermodynamics of the Eu(III)-Mg-SO4-H2O and Eu(III)-Na-SO4-H2O systems. Part I: Solubility experiments and the full dissociation Pitzer model. Dalton Trans. 2024, 53, 6289–6299. [Google Scholar] [CrossRef]
- Jia, S.; Gao, Z.; Yao, T.; Wang, J.; Gong, J. Fractal model-based crystal pillar structure simulation and mechanism analysis of impurity migration process in layer melt crystallization. Chem. Eng. Sci. 2023, 275, 118722. [Google Scholar] [CrossRef]
- Kırboğa, S.; Öner, M. Inhibition of calcium oxalate crystallization by graft copolymers. Cryst. Growth Des. 2009, 9, 2159–2167. [Google Scholar] [CrossRef]
- Xu, Y.; Jia, H.B.; Piao, J.N.; Ye, S.R.; Huang, J. Crystallization behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites. J. Mater. Sci. 2008, 43, 417–421. [Google Scholar] [CrossRef]
- Qiao, M.; Li, F.; Wang, M.; Zhu, H.; Zhang, Y.; Yuan, J. Application of molecular dynamics simulation and Raman spectroscopy to study the hydration phenomena of calcium, magnesium and chloride ions. Sci. Bull. 2022, 67, 520–528. [Google Scholar]
Formation Energy E = E(plane) − Enacl − Eslab | (100)plane | (010)plane |
---|---|---|
Energy after adsorption | −48,070.75873 | −48,077.44381 |
Eslab | −46,354.04541 | −46,357.70313 |
ENaCl | −1714.430308 | −1714.430308 |
Formation energy | −2.283022519 | −5.310377279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Cheng, H.; Zhao, J.; Cheng, W. Mechanisms and Applications of Impurity-Driven Surface Modification in Magnesium Sulfate Crystallization. Crystals 2025, 15, 190. https://doi.org/10.3390/cryst15020190
Yang M, Cheng H, Zhao J, Cheng W. Mechanisms and Applications of Impurity-Driven Surface Modification in Magnesium Sulfate Crystallization. Crystals. 2025; 15(2):190. https://doi.org/10.3390/cryst15020190
Chicago/Turabian StyleYang, Minhang, Huaigang Cheng, Jing Zhao, and Wenting Cheng. 2025. "Mechanisms and Applications of Impurity-Driven Surface Modification in Magnesium Sulfate Crystallization" Crystals 15, no. 2: 190. https://doi.org/10.3390/cryst15020190
APA StyleYang, M., Cheng, H., Zhao, J., & Cheng, W. (2025). Mechanisms and Applications of Impurity-Driven Surface Modification in Magnesium Sulfate Crystallization. Crystals, 15(2), 190. https://doi.org/10.3390/cryst15020190