Crystal Morphology of Antarctic Micrometeorites Based on Melting–Cooling Processes During Atmospheric Entry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Methods
2.2.1. Scanning Electron Microscopy–Energy-Dispersive X-Ray (SEM-EDX)
2.2.2. Raman Spectroscopy
2.2.3. LA-ICP-MS Analysis
3. Results
3.1. Barred Olivine (BO) Spheres
3.2. Porphyritic Olivine (PO) Spheres
3.3. Cryptocrystalline Olivine (CC) Spheres
3.4. Glassy (Vitreous: V) Spheres
3.5. Mineral Chemistry
4. Discussion
4.1. Description and Origin of MMs
4.2. Crystal Morphology of MMs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Genge, M.J.; Engrand, C.; Gounelle, M.; Taylor, S. The classification of micrometeorites. Meteorit. Planet. Sci. 2008, 43, 497–515. [Google Scholar] [CrossRef]
- Maurette, M.; Olinger, C.; Michel-Levy, M.C.; Kurat, G.; Pourchet, M.; Brandstatter, F.; Bourot-Denise, M.A. Collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature 1991, 351, 44–47. [Google Scholar] [CrossRef]
- Taylor, S.; Lever, J.H.; Harvey, R.P. Numbers, types, and compositions of an unbiased collection of cosmic spherules. Meteorit. Planet. Sci. 2000, 55, 651–666. [Google Scholar] [CrossRef]
- Duprat, J.; Engrand, C.; Maurette, M.; Kurat, G.; Gounelle, M.; Hammer, C. Micrometeorites from Central Antarctic snow: The Concordia collection. Adv. Space Res. 2007, 39, 605–611. [Google Scholar] [CrossRef]
- Rochette, P.; Folco, L.; Suavet, C.; van Ginneken, M.; Gattacceca, J.; Perchiazzi, N.; Braucher, R.; Harvey, R.P. Micrometeorites from the Transantarctic Mountains. Proc. Natl. Acad. Sci. USA 2008, 105, 8206–18211. [Google Scholar] [CrossRef]
- Brownlee, D.E. Cosmic dust: Collection and research. Annu. Rev. Earth Planet. Sci. 1985, 13, 147–173. [Google Scholar] [CrossRef]
- Kurat, G.; Koeberl, C.; Presper, T.; Brandstätter, F.; Maurette, M. Petrology and geochemistry of Antarctic micrometeorites. Geochim. Cosmochim. Acta 1994, 58, 3879–3904. [Google Scholar] [CrossRef]
- Genge, M.J.; Grady, M.M.; Hutchison, R. The textures and compositions of fine-grained Antarctic micrometeorites—Implications for comparisons with meteorites. Geochim. Cosmochim. Acta 1997, 61, 5149–5162. [Google Scholar] [CrossRef]
- Cordier, C.; Folco, L.; Taylor, S. Vestoid cosmic spherules from the South Pole Water Well and Transantarctic Mountains (Antarctica): A major and trace element study. Geochim. Cosmochim. Acta 2011, 75, 1199–1215. [Google Scholar] [CrossRef]
- Goderis, S.; Soens, B.; Huber, M.S.; McKibbin, S.; van Ginneken, M.; Van Maldeghem, F.; Debaille, V.; Greenwood, R.C.; Franchi, I.A.; Cnudde, V.; et al. Cosmic spherules from Widerøefjellet, Sør Rondane Mountains (East Antarctica). Geochim. Cosmochim. Acta 2020, 270, 112–143. [Google Scholar] [CrossRef]
- Noguchi, T.; Matsumoto, R.; Yabuta, H.; Kobayashi, H.; Miyake, A.; Naraoka, H.; Okazaki, R.; Imae, N.; Yamaguchi, A.; Kilcoyne, A.L.D.; et al. Antarctic micrometeorite composed of CP and CS IDP-like material: A micro-breccia originated from a partially ice-melted comet-like small body. Meteorit. Planet. Sci. 2022, 57, 2042–2062. [Google Scholar] [CrossRef]
- Rojas, J.; Duprat, J.; Engrand, C.; Dartois, E.; Delauche, L.; Godard, M.; Gounelle, M.; Carrillo-Sánchez, J.D.; Pokorný, P.; Plane, J.M.C. The micrometeorite flux at Dome C (Antarctica), monitoring the accretion of extraterrestrial dust on Earth. Earth Planet. Sci. Lett. 2021, 560, 116794. [Google Scholar] [CrossRef]
- Fernandes, D.; Rudraswami, N.G.; Pandey, M.; Singh, V.P. Chemical compositions of Fe-rich relict olivines from cosmic spherules, understanding their links with ordinary and carbonaceous chondrites. Meteorit. Planet. Sci. 2024, 59, 605–625. [Google Scholar] [CrossRef]
- Rudraswami, N.G.; Fernandes, D.; Pandey, M. Probing the nature of extraterrestrial dust reaching the Earth’s surface collected from the Maitri station, Antarctica. Meteorit. Planet. Sci. 2020, 55, 2256–2266. [Google Scholar] [CrossRef]
- Zolensky, M.; Bland, P.; Brown, P.; Halliday, I. Flux of extra-terrestrial materials. Meteor. Early Sol. Syst. 2006, 943, 869–888. [Google Scholar]
- Zolensky, M.E.; Zega, T.J.; Yano, H.; Wirick, S.; Westphal, A.J.; Weisberg, M.K.; Weber, I.; Warren, J.L.; Velbel, M.A.; Tsuchiyama, A.; et al. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 2006, 314, 1735–1739. [Google Scholar] [CrossRef]
- Nesvorny, D.; Bottke, W.F.; Levison, H.F.; Dones, L. Recent origin of the solar system dust bands. Astrophys. J. 2003, 591, 486–497. [Google Scholar] [CrossRef]
- Nesvorny, D.; Vokrouhlicky, D.; Bottke, W.F.; Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 2006, 181, 107–144. [Google Scholar] [CrossRef]
- Noguchi, T.; Ohashi, N.; Tsujimoto, S.; Mitsunari, T.; Bradley, J.P.; Nakamura, T.; Toh, S.; Stephan, T.; Iwata, N.; Imae, N. Cometary dust in Antarctic ice and snow: Past and present chondritic porous micrometeorites preserved on the Earth’s surface. Earth Planet. Sci. Lett. 2015, 410, 1–11. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Güther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LAICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J. Nomenclature of pyroxenes. Mineral. Mag. 1988, 52, 535–550. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Mouri, T.; Enami, M. Raman spectroscopic study of olivine-group minerals. J. Mineral. Petrol. Sci. 2008, 103, 100–104. [Google Scholar] [CrossRef]
- Bloise, A.; Barrese, E.; Apollaro, C.; Miriello, D. Flux growth and characterization of Ti- and Ni-doped forsterite single crystals. Cryst. Res. Technol. 2009; 44, 463–468. [Google Scholar]
- Aysal, N.; Kurt, Y.; Öztürk, H.; Ildiz, G.O.; Yesiltas, M.; Laçin, D.; Öngen, S.; Nikitin, T.; Fausto, R. Crystallization Kinetics: Relationship between Crystal Morphology and the Cooling Rate—Applications for Different Geological Materials. Crystals 2023, 13, 1130. [Google Scholar] [CrossRef]
- Donaldson, C.H. An experimental investigation of olivine morphology. Contrib. Miner. Petrol. 1976, 57, 187–213. [Google Scholar] [CrossRef]
- Welsch, B.; Faure, F.; Famin, V.; Baronnet, A.; Bachèlery, P. Dendritic crystallization: A single process for all the textures of olivine in basalts? J. Petrol. 2013, 54, 539–574. [Google Scholar] [CrossRef]
- Faure, F.; Trolliard, G.; Nicollet, C.; Montel, J.M. A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib. Miner. Petrol. 2003, 145, 251–263. [Google Scholar] [CrossRef]
- Faure, F.; Schiano, P.; Trolliard, G.; Nicollet, C.; Soulestin, B. Textural evolution of polyhedral olivine experiencing rapid cooling rates. Contrib. Miner. Petrol. 2007, 153, 405–416. [Google Scholar] [CrossRef]
- Scarani, A.; Zandonà, A.; Di Fiore, F.; Valdivia, P.; Putra, R.; Miyajima, N.; Bornhöft, H.; Vona, A.; Deubener, J.; Romano, C.; et al. A chemical threshold controls nanocrystallization anddegassing behaviour in basalt magmas. Commun. Earth Environ. 2022, 3, 284. [Google Scholar] [CrossRef]
- Arzilli, F.; Polacci, M.; La Spina, G.; Le Gall, N.; Llewellin, E.; Brooker, R.A.; Torres-Orozco, R.; Di Genova, D.; Neave, D.A.; Hartley, M.; et al. Dendritic crystallization in hydrous basaltic magmas controls magma mobility within the Earth’s crust. Nat. Commun. 2022, 13, 3354. [Google Scholar] [CrossRef]
- Kretz, R. Dendritic magnetite and ilmenite in 590 Ma Grenville dikes near Otter Lake, Quebec, Canada. Can. Mineral. 2003, 41, 1049–1059. [Google Scholar] [CrossRef]
- Isobe, H.; Gondo, T. Dendritic magnetite crystals in rapid quenched fine spherules produced by falling experiments through the high temperature furnace with controlled gas flow. J. Mineral. Petrol. Sci. 2013, 108, 227–237. [Google Scholar] [CrossRef]
- Genge, M.J. Igneous rims on micrometeorites. Geochim. Cosmochim. Acta 2006, 70, 2603–2621. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sönmez, T.; Aysal, N. Crystal Morphology of Antarctic Micrometeorites Based on Melting–Cooling Processes During Atmospheric Entry. Crystals 2025, 15, 179. https://doi.org/10.3390/cryst15020179
Sönmez T, Aysal N. Crystal Morphology of Antarctic Micrometeorites Based on Melting–Cooling Processes During Atmospheric Entry. Crystals. 2025; 15(2):179. https://doi.org/10.3390/cryst15020179
Chicago/Turabian StyleSönmez, Taki, and Namık Aysal. 2025. "Crystal Morphology of Antarctic Micrometeorites Based on Melting–Cooling Processes During Atmospheric Entry" Crystals 15, no. 2: 179. https://doi.org/10.3390/cryst15020179
APA StyleSönmez, T., & Aysal, N. (2025). Crystal Morphology of Antarctic Micrometeorites Based on Melting–Cooling Processes During Atmospheric Entry. Crystals, 15(2), 179. https://doi.org/10.3390/cryst15020179