Influence of Aging Temperature on the Electrochemical Corrosion Behavior of an Age-Hardening 7xxx Aluminum Alloy
Abstract
:1. Introduction
2. Experiment
3. Results and Analysis
3.1. Microstructure
3.2. Polarization Curve
3.3. Electrochemical Impedance Spectroscopy
3.4. Morphology Characterization
4. Discussion
5. Conclusions
- (1)
- After aging treatment at 120 °C, 150 °C, and 180 °C/10 h, the matrix precipitates of T6 Al–6.8Zn–2Mg–2Cu–0.1Zr–0.2Sc alloy are GP zone, GP zone + η′ phase, and η′ phase + η phase, respectively. Bean-like Al3(Sc, Zr) phase is distributed in the crystal.
- (2)
- With the increase in aging temperature, the precipitated phase at the grain boundary gradually coarsens and distributes intermittently. With the increase in Cu content, there is no precipitation zone at the grain boundary, and the width is obvious.
- (3)
- After electrochemical corrosion in a 3.5 wt.% NaCl solution, with the increase of aging temperature, the corrosion current density decreases, the polarization resistance increases, and the corrosion resistance increases. The coarse η phase on the grain boundary and its high Cu content are the main reasons for the improvement in the corrosion resistance of the alloy.
- (4)
- The electrochemical corrosion mechanism of the alloy aged at 120 °C/150 °C is intergranular corrosion and pitting corrosion, while the corrosion mechanism of the alloy aged at 180 °C is pitting corrosion.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, M.; Lu, F.; Zhou, S.; Liu, S.; Ye, L. Effect of Cu on precipitation hardening and clustering behavior of Al-Zn-Mg alloys in the early stage of aging. Mater. Charact. 2025, 219, 114632. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, C.; Le, W.; An, B. Precipitation behavior and precipitates Characterization of Al-Zn-Mg-Cu alloy during the non-isothermal aging process. Vacuum 2024, 113946. [Google Scholar] [CrossRef]
- Jiang, X.; Che, X.; Zhu, M.; Liu, C. Effect of aging state on the microstructure and tensile properties of Al-7.0Zn-2.5Mg-2.0Cu-0.1Zr-0.2Sc alloy. Crystals 2023, 13, 581. [Google Scholar] [CrossRef]
- Wei, X.; Fu, D.; Chen, M.; Wu, W.; Wu, D.; Liu, C. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environment Alloying Elements. J. Mater. Sci. Technol. 2021, 64, 222–232. [Google Scholar] [CrossRef]
- Xiong, X.L.; Zhang, N.; Yang, J.J.; Chen, T.; Niu, T. Machine learning-assisted prediction of corrosion behavior of 7XXX aluminum alloys. Metals 2024, 14, 401. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Hu, G.-Y.; Chen, K.; Huang, L. Effect of Zn/Mg ratios on SCC, electrochemical corrosion properties and microstructure of Al-Zn-Mg alloy. J. Alloys Compd. 2018, 757, 259–264. [Google Scholar] [CrossRef]
- Peng, X.; Li, Y.; Xu, G.; Huang, J.; Yin, Z. Effect of precipitate state on mechanical properties, corrosion behavior, and microstructures of Al-Zn-Mg-Cu alloy. Met. Mater. Int. 2018, 24, 1046–1057. [Google Scholar] [CrossRef]
- Liu, P.; Hu, L.; Zhang, Q.; Yang, C.; Yu, Z.; Zhang, J.; Hu, J.; Cao, F. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous. J. Mater. Sci. Technol. 2021, 64, 85–98. [Google Scholar] [CrossRef]
- Deng, P.; Mo, W.; Ouyang, Z.; Chen, J.; Luo, B.; Bai, Z. Effect of Zr content on corrosion behavior and chemically-milled surface roughness of Al-Cu-Mg alloy. J. Alloys Compd. 2023, 965, 171364. [Google Scholar] [CrossRef]
- Sun, Y.W.; Wang, Z.Y.; Pan, Q.L.; Chen, W.X.; Yin, Z.K.; Li, D.K.; Zheng, Q. Localized corrosion process of Al-Zn-Mg-Cu-Zr alloy: Transitions from pitting corrosion to intergranular corrosion. J. Cent. South Univ. 2023, 30, 2120–2132. [Google Scholar] [CrossRef]
- Sun, Q.Q.; Chen, K.H.; Fang, H.C.; Xu, J.; Dong, P.; Hu, G.; Chen, Q. Effect of grain refinement on electrochemical behavior of Al-Zn-Mg-Cu alloys. Int. J. Electrochem. Sci. 2016, 11, 5855–5869. [Google Scholar] [CrossRef]
- Jiang, K.-D.; Liao, Z.-X.; Chen, M.-Y.; Liu, S.-D.; Tang, J.-G. Impact of cooling rate on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy. J. Cent. South Univ. 2024, 31, 2225–2236. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, J.; Liu, G.; Liang, Y.J. Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al-Zn-Mg-Cu alloy. Mater. Des. 2015, 83, 866–875. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, Z.; Shi, D.; Dong, X.; Shi, X.; Li, C.; Zhao, J.; Dai, H. Enhancing the corrosion resistance and mechanical properties of a high-alloying Al-Zn-Mg-Cu-Zr alloy by Ce addition and aging treatment. Metals 2020, 10, 1318. [Google Scholar] [CrossRef]
- Shi, Y.J.; Pan, Q.L.; Li, M.J.; Huang, X.; Li, B. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys. J. Alloys Compd. 2014, 612, 42–50. [Google Scholar] [CrossRef]
- Sun, F.; Nash, G.L.; Li, Q.; Liu, E.; He, C.; Shi, C.; Zhao, N. Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys. J. Mater. Sci. Technol. 2017, 33, 1015–1022. [Google Scholar] [CrossRef]
- Xia, P.; Wang, S.; Huang, H.; Zhou, N.; Song, D.; Jia, Y. Effect of Sc and Zr additions on recrystallization behavior and intergranular corrosion resistance of Al-Zn-Mg-Cu alloys. Materials 2021, 14, 5516. [Google Scholar] [CrossRef]
- Liu, L.; Jia, Y.-Y.; Jiang, J.-T.; Zhang, B.; Li, G.-A.; Shao, W.-Z.; Zhen, L. The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys. J. Alloys Compd. 2019, 799, 1–14. [Google Scholar] [CrossRef]
- Azarniya, A.; Taheri, A.K.; Taheri, K.K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective. J. Alloys Compd. 2019, 781, 945–983. [Google Scholar] [CrossRef]
- Kayani, S.H.; Park, S.; Euh, K.; Seol, J.B.; Kim, J.G.; Sung, H. Dislocation-aided electrochemical behavior of precipitates in stress corrosion cracking of Al-Zn-Mg-Cu alloys. Mater. Charact. 2022, 190, 112019. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Liu, S.-D.; Jiang, J.-Y.; Wei, W.-C. Effect of Cu content on intergranular corrosion and exfoliation corrosion susceptibility of Al-Zn-Mg-(Cu) alloys. Trans. Nonferrous Met. Soc. China 2023, 33, 1963–1976. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Ma, X.W.; Zhang, C.S.; Chu, G.; Meng, Z.; Zhao, G.; Chen, L. Effect of stress-aging treatment on the mechanical and corrosion properties of Al–Zn–Mg–Cu alloy. Mater. Sci. Eng. A 2022, 838, 142791. [Google Scholar] [CrossRef]
- Leng, J.-F.; Ren, B.-H.; Zhou, Q.-B.; Zhao, J.-W. Effect of Sc and Zr on recrystallization behavior of 7075 aluminum alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 2545–2557. [Google Scholar] [CrossRef]
- Li, C.; Pan, Q.L.; Shi, Y.J.; Wang, Y.; Li, B. Influence of aging temperature on corrosion behavior of Al-Zn-Mg-Sc-Zr alloy. Mater. Des. 2014, 55, 551–559. [Google Scholar] [CrossRef]
- Liang, Y.; Li, G.; Liu, L.; Jiang, J.; Cao, J.; Shao, W.; Zhen, L. Corrosion behavior of Al-6.8Zn-2.2Mg-Sc-Zr alloy with high resistance to intergranular corrosion. J. Mater. Res. Technol. 2023, 24, 7552–7569. [Google Scholar] [CrossRef]
- Xu, D.K.; Birbilis, N.; Rometsch, P.A. Effect of S-phase dissolution on the corrosion and stress corrosion cracking of an as-rolled Al-Zn-Mg-Cu Alloy. Corrosion 2012, 68, B1–B10. [Google Scholar] [CrossRef]
Processing Status | HBW | ||||
---|---|---|---|---|---|
1# | 2# | 3# | Average | ||
As extruded | 84.4 | 87.2 | 86.6 | 86.1 | |
Homogenization | 102.2 | 103.8 | 101.4 | 102.5 | |
Aging | 120 °C | 127.7 | 128.2 | 128.4 | 128.1 |
150 °C | 134.6 | 134.3 | 133.8 | 134.2 | |
180 °C | 131.2 | 130.8 | 130.6 | 130.9 |
Aging Temperature (°C) | Ecorr/VSCE | Icorr(A·cm−2) |
---|---|---|
120 °C | −1.264 | 9.826 × 10−6 |
150 °C | −1.126 | 7.307 × 10−6 |
180 °C | −0.963 | 3.834 × 10−6 |
Aging Temperature (°C) | Rs (Ω·cm−2) | Rct (Ω·cm−2) | CPE | |
---|---|---|---|---|
Yo/(Ω·cm−2·s−n) | n | |||
120 | 5.818 | 2983 | 3.259 × 10−6 | 0.8236 |
150 | 6.597 | 7492 | 1.05 × 10−5 | 0.9353 |
180 | 7.539 | 14,320 | 1.048 × 10−5 | 0.8763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, B.; Liu, X.; Yi, Y.; Li, H.; Shi, F. Influence of Aging Temperature on the Electrochemical Corrosion Behavior of an Age-Hardening 7xxx Aluminum Alloy. Crystals 2025, 15, 107. https://doi.org/10.3390/cryst15020107
Cai B, Liu X, Yi Y, Li H, Shi F. Influence of Aging Temperature on the Electrochemical Corrosion Behavior of an Age-Hardening 7xxx Aluminum Alloy. Crystals. 2025; 15(2):107. https://doi.org/10.3390/cryst15020107
Chicago/Turabian StyleCai, Boqian, Xiaolong Liu, Yang Yi, Hongyang Li, and Fanian Shi. 2025. "Influence of Aging Temperature on the Electrochemical Corrosion Behavior of an Age-Hardening 7xxx Aluminum Alloy" Crystals 15, no. 2: 107. https://doi.org/10.3390/cryst15020107
APA StyleCai, B., Liu, X., Yi, Y., Li, H., & Shi, F. (2025). Influence of Aging Temperature on the Electrochemical Corrosion Behavior of an Age-Hardening 7xxx Aluminum Alloy. Crystals, 15(2), 107. https://doi.org/10.3390/cryst15020107