Carbon Nanotube Production Pathways: A Review of Chemical Vapor Deposition and Electrochemical CO2 Conversion, Such as C2CNT
Abstract
1. GNC and CNT Overview and Environmental Impact
2. CVD History
3. Introduction to CVD
3.1. General CVD
3.2. CVD Methodologies and Modifications
3.3. CVD Alternative Precursors and Products
4. CVD Pricing
5. CVD Scale-Up
6. C2CNT Processes Introduction
7. IC2CNT (Insulation Facilitated C2CNT)
8. Beyond Pure Lithium Electrolyte C2CNT
9. Unique Properties of C2CNT GNCs Compared to CVD
10. Future Tech for C2CNT
11. Comparative Process and Future Economics Speculation
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
C2CNT | CO2 to Carbon NanoTube |
CNT | Carbon NanoTube |
CNO | Carbon Nano-Onions |
CVD | Chemical Vapor Deposition |
GHG | GreenHouse Gas |
GNC | Graphene Nano-Carbon |
IC2CNT | Insulated CO2 to Carbon NanoTube |
MWCNT | Multi-Walled Carbon NanoTube |
SWCNT | Single-Walled Carbon NanoTube |
References
- Islam, M.A.; Hasan, M.; Rahman, M.; Mobarak, M.H.; Mimona, M.A.; Hossain, N. Advances and Significances of Carbon Nanotube Applications: A Comprehensive Review. Eur. Polym. J. 2024, 220, 113443. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A.; Jafarkhani, P.; Moztarzadeh, F. High-Yield Synthesis of Carbon Nanotubes Using a Water-Soluble Catalyst Support in Catalytic Chemical Vapor Deposition. Carbon 2006, 44, 1343–1345. [Google Scholar] [CrossRef]
- Ren, Z.F.; Huang, Z.P.; Wu, J.W.; Wang, J.H.; Bush, P.; Siegal, M.P.; Provencio, P.N. Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science 1998, 282, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- NanoLab. SEM Images & TEM Images of Carbon Nanotubes, Aligned Carbon Nanotube Arrays, and Nanoparticles. Available online: http://www.nano-lab.com/imagegallery.html (accessed on 9 September 2025).
- Neupane, S.; Lastres, M.; Chiarella, M.; Li, W.; Su, Q.; Du, G. Synthesis and Field Emission Properties of Vertically Aligned Carbon Nanotube Arrays on Copper. Carbon 2012, 50, 2641–2650. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Carbon Nanotubes from Camphor: An Environment-Friendly Nanotechnology. J. Phys. Conf. Ser. 2007, 61, 643–646. [Google Scholar] [CrossRef]
- Smalley, R.E.; Li, Y.; Moore, V.C.; Price, B.K.; Colorado, R.; Schmidt, H.K.; Hauge, R.H.; Barron, A.R.; Tour, J.M. Single Wall Carbon Nanotube Amplification: En Route to a Type-Specific Growth Mechanism. J. Am. Chem. Soc. 2006, 128, 15824–15829. [Google Scholar] [CrossRef]
- Hata, K.; Futaba, D.N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science 2004, 306, 1362–1364. [Google Scholar] [CrossRef]
- Futaba, D.N.; Hata, K.; Yamada, T.; Mizuno, K.; Yumura, M.; Iijima, S. Kinetics of Water-Assisted Single-Walled Carbon Nanotube Synthesis Revealed by a Time-Evolution Analysis. Phys. Rev. Lett. 2005, 95, 056104. [Google Scholar] [CrossRef]
- Hiraoka, T.; Izadi-Najafabadi, A.; Yamada, T.; Futaba, D.N.; Yasuda, S.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S.; Hata, K. Compact and Light Supercapacitor Electrodes from a Surface-Only Solid by Opened Carbon Nanotubes with 2200 m2 g−1 Surface Area. Adv. Funct. Mater. 2010, 20, 422–428. [Google Scholar] [CrossRef]
- Unidym. UnidymTM Product Sheet: Single-Walled Carbon Nanotubes (SWNT); Unidym, Inc.: Menlo Park, CA, USA; Available online: https://web.archive.org/web/20110717162816/http://www.unidym.com/files/Unidym_Product_Sheet_SWNT.pdf (accessed on 13 October 2025).
- Yamada, T.; Namai, T.; Hata, K.; Futaba, D.N.; Mizuno, K.; Fan, J.; Yudasaka, M.; Yumura, M.; Iijima, S. Size-Selective Growth of Double-Walled Carbon Nanotube Forests from Engineered Iron Catalysts. Nat. Nanotechnol. 2006, 1, 131–136. [Google Scholar] [CrossRef]
- Futaba, D.N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-Engineerable and Highly Densely Packed Single-Walled Carbon Nanotubes and Their Application as Super-Capacitor Electrodes. Nat. Mater. 2006, 5, 987–994. [Google Scholar] [CrossRef]
- Carbon Nanotubes Market (2025–2030). Available online: https://www.grandviewresearch.com/industry-analysis/carbon-nanotubes-cnt-market (accessed on 3 October 2025).
- Ren, J.; Yu, A.; Peng, P.; Lefler, M.; Li, F.-F.; Licht, S. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons. Acc. Chem. Res. 2019, 52, 3177–3187. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Licht, G.; Wang, X.; Licht, S. Controlled Transition Metal Nucleated Growth of Carbon Nanotubes by Molten Electrolysis of CO2. Catalysts 2022, 12, 137. [Google Scholar] [CrossRef]
- Liu, X.; Licht, G.; Wang, X.; Licht, S. Controlled Growth of Unusual Nanocarbon Allotropes by Molten Electrolysis of CO2. Catalysts 2022, 12, 125. [Google Scholar] [CrossRef]
- Liu, X.; Ren, J.; Licht, G.; Wang, X.; Licht, S. Carbon Nano-Onions Made Directly from CO2 by Molten Electrolysis for Greenhouse Gas Mitigation. Adv. Sustain. Syst. 2019, 3, 1900056. [Google Scholar] [CrossRef]
- Johnson, M.; Ren, J.; Lefler, M.; Licht, G.; Vicini, J.; Licht, S. Data on SEM, TEM and Raman Spectra of Doped, and Wool Carbon Nanotubes Made Directly from CO2 by Molten Electrolysis. Data Brief 2017, 14, 592–606. [Google Scholar] [CrossRef]
- Wang, X.; Sharif, F.; Liu, X.; Licht, G.; Lefler, M.; Licht, S. Magnetic Carbon Nanotubes: Carbide Nucleated Electrochemical Growth of Ferromagnetic CNTs from CO2. J. CO2 Util. 2020, 40, 101218. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Licht, G.; Licht, S. Transformation of the Greenhouse Gas Carbon Dioxide to Graphene. J. CO2 Util. 2020, 36, 288–294. [Google Scholar] [CrossRef]
- Lai, C.-C.; Goyenola, C.; Broitman, E.; Naslund, L.-A.; Hogberg, H.; Hulman, L.; Gueorguiev, G.K.; Rosen, J. Synthesis and properties of CSxFy thin films deposited by reactive magnetron sputtering in an Ar/SF6 discharge. Chem. Phys. Lett. 2017, 506, 86–91. [Google Scholar]
- Gueorguiev, G.K.; Stafström, S.; Hultman, L. Fullerene-like CSx: A first-principles study of synthetic growth. Chem. Phys. Lett. 2011, 506, 86–91. [Google Scholar]
- Megatonne-Scale Plants Planned to Turn Captured CO2 Into Industrial Nanocarbons—Nanowerk. Available online: https://www.nanowerk.com/spotlight/spotid=67373.php#google_vignette (accessed on 11 October 2025).
- Licht, S.; Liu, X.; Licht, G.; Wang, X.; Swesi, A.; Chan, Y. Amplified CO2 Reduction of Greenhouse Gas Emissions with C2CNT Carbon Nanotube Composites. Mater. Today Sustain. 2019, 6, 100023. [Google Scholar] [CrossRef]
- Licht, G.; Hofstetter, H.; Licht, S. Polymer Composites with Carbon Nanotubes Made from CO2. RSC Sustain. 2024, 2, 2496–2504. [Google Scholar] [CrossRef]
- Licht, S. Co-Production of Cement and Carbon Nanotubes with a Carbon-Negative Footprint. J. CO2 Util. 2017, 18, 378–389. [Google Scholar] [CrossRef]
- Licht, G.; Hofstetter, H.; Licht, S. Buckypaper Made with Carbon Nanotubes Derived from CO2. RSC Adv. 2024, 14, 27195–27197. [Google Scholar] [CrossRef] [PubMed]
- Licht, G.; Hofstetter, K.; Licht, S. Intense, Self-Induced Sustainable Microwave Plasma Using Carbon Nanotubes Made from CO2. Nanoscale 2024, 17, 9279–9296. [Google Scholar] [CrossRef] [PubMed]
- Berger, M. Scientists Discover Unexpected Plasma Formation When Microwaving CO2-Derived Carbon Nanotubes (w/Video). 2025. Available online: https://www.nanowerk.com/spotlight/spotid=66357.php (accessed on 19 September 2025).
- Basheer, B.V.; George, J.; Siengchin, S.; Parameswaranpillai, J. Polymer Grafted Carbon Nanotubes—Synthesis, Properties, and Applications: A Review. Nano-Struct. Nano-Objects 2022, 22, 100429. [Google Scholar] [CrossRef]
- Imtiaza, S.; Siddiqa, M.; Kausara, A.; Muntha, S.J.; Ambreenb, I.B. A Review Featuring Fabrication, Properties, and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites. Chin. J. Polym. Sci. 2018, 36, 445–461. [Google Scholar] [CrossRef]
- Gantayata, S.; Routb, D.; Swain, S.K. Carbon Nanomaterial–Reinforced Epoxy Composites: A Review. Polym. Plast. Technol. Eng. 2018, 57, 1–16. [Google Scholar] [CrossRef]
- Rafiquea, I.; Kausara, A.; Anwara, Z.; Muhammad, B. Exploration of Epoxy Resins, Hardening Systems, and Epoxy/Carbon Nanotube Composite Designed for High Performance Materials: A Review. Polym.-Plast. Technol. Eng. 2016, 55, 312–333. [Google Scholar] [CrossRef]
- Kausara, A.; Rafiquea, I.; Muhammad, B. Review of Applications of Polymer/Carbon Nanotubes and Epoxy/CNT Composites. Polym.-Plast. Technol. Eng. 2016, 55, 1167–1191. [Google Scholar] [CrossRef]
- Singh, B.; Gorji, Z.E.; Singh, R.; Sharma, V.; Repo, T. Silica Gel Supported Solid Amine Sorbents for CO2 Capture. Energy Environ. Mater. 2025, 8, e12832. [Google Scholar] [CrossRef]
- Waseem, M.; Al-Marzouqi, M.; Ghasem, N. A Review of Catalytically Enhanced CO2-Rich Amine Solutions Regeneration. J. Environ. Chem. Eng. 2023, 11, 110188. [Google Scholar] [CrossRef]
- CO2.Earth. Latest Daily CO2. Available online: https://www.co2.earth/daily-co2 (accessed on 9 September 2025).
- NASA. The Relentless Rise of Carbon Dioxide. Available online: https://science.nasa.gov/resource/graphic-the-relentless-rise-of-carbon-dioxide/ (accessed on 9 September 2025).
- Arrhenius, S. Worlds in the Making; Borns, H., Translator; Harper and Brothers Publishers: London, UK, 1908; Volume 53, p. 61. [Google Scholar]
- Urban, M.C. Accelerating Extinction Risk from Climate Change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef]
- CO2 Emissions—Global Energy Review 2025—Analysis, International Energy Agency (IEA). Available online: https://www.iea.org/reports/global-energy-review-2025/co2-emissions (accessed on 3 October 2025).
- Dong, Z.; Li, B.; Cui, C.; Qian, W.; Jin, Y.; Wei, F. Catalytic methane technology for carbon nanotubes and graphene. React. Chem. Eng. 2020, 5, 991–1004. [Google Scholar] [CrossRef]
- Plata, D.L.; Hart, A.J.; Reddy, C.M.; Gschwend, P.M. Early Evaluation of Potential Environmental Impacts of Carbon Nanotube Synthesis by Chemical Vapor Deposition. Environ. Sci. Technol. 2009, 43, 8367–8837. [Google Scholar] [CrossRef]
- Saputri, D.D.; Jan’ah, A.M.; Saraswati, T.E. Synthesis of Carbon Nanotubes (CNT) by Chemical Vapor Deposition (CVD) Using a Biogas-Based Carbon Precursor: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 959, 012019. [Google Scholar] [CrossRef]
- EPA. Understanding Global Warming Potentials. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed on 10 September 2025).
- Licht, S. Efficient Solar-Driven Synthesis, Carbon Capture, and Desalinization, STEP: Solar Thermal Electrochemical Production of Fuels, Metals, Bleach. Adv. Mater. 2011, 23, 5592–5612. [Google Scholar] [CrossRef]
- Licht, G.; Peltier, E.; Gee, S.; Licht, S. Eliminating Active CO2 Concentration in Carbon Capture and Storage (CCUS): Molten Carbonate Decarbonization through an Insulation/Diffusion Membrane. DeCarbon 2025, 7, 100094. [Google Scholar] [CrossRef]
- Licht, G.; Peltier, E.; Gee, S.; Licht, S. Direct Air Capture (DAC): Molten Carbonate direct transformation of airborne CO2 to durable, useful carbon nanotubes and nano-onions. RSC Sustain. 2025, 3, 1330. [Google Scholar] [CrossRef]
- Haubner, R. The History of Hard CVD Coatings for Tool Applications at the University of Technology Vienna. Int. J. Refract. Met. Hard Mater. 2013, 41, 22–34. [Google Scholar] [CrossRef]
- Greene, J.E. Tracing the 5000-Year Recorded History of Inorganic Thin Films from ∼3000 BC to the Early 1900s AD. Appl. Phys. Rev. 2014, 1, 041302. [Google Scholar] [CrossRef]
- Yuriansyah Barmaki, M.J. An Introduction to Engineering Materials: Synthesis, Properties, and Application of Carbon Nanotubes. Academia. Available online: https://www.academia.edu/9792032/An_Introduction_To_Engineering_Materials_Synthesis_Properties_And_Application_Of_Carbon_Nanotubes?email_work_card=view-paper (accessed on 9 September 2025).
- Assouar, M.B.; Dossot, M.; Rizk, S.; Tiusan, C.; Bougdira, J. The Use of Microwave Plasma-Assisted CVD on Nanostructured Iron Catalysts to Grow Isolated Bundles of Carbon Nanotubes. Nanotechnology 2010, 21, 065708. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, N.M.; Abdullah, E.C.; Jayakumar, N.S.; Sahu, J.N. An Overview on Methods for the Production of Carbon Nanotubes. J. Ind. Eng. Chem. 2014, 20, 1186–1197. [Google Scholar] [CrossRef]
- Li, Y. Chemical Vapor Deposition of Carbon Nanotubes. Available online: https://www.photon.t.u-tokyo.ac.jp/~maruyama/visitors/16_CVD_CNT.pdf (accessed on 9 September 2025).
- Cadence PCB Solutions. Exploring Chemical Vapor Deposition (CVD) for Electronics, 2023, Cadence. Available online: https://resources.pcb.cadence.com/blog/2023-exploring-chemical-vapor-deposition-cvd-for-electronics (accessed on 10 September 2025).
- Chemical Vapour Deposition: CVD. 2025. Available online: https://www.sfu.ca/~gchapman/e495/e495l10j.pdf (accessed on 10 September 2025).
- Kermani, A.; Ku, Y.H.; Wong, F.; Kim, K.B.; Maillot, P.; Morgan, A.E.; Hahn, S. The Application of Rapid Thermal Chemical Vapor Deposition of Doped-Thin Single Crystal Silicon for MOS and Bipolar Technologies. In Proceedings Volume 1189, Rapid Isothermal Processing; SPIE: St Bellingham, WA, USA, 1990; p. 121. [Google Scholar] [CrossRef]
- Mattox, D.M. The “Good” Vacuum (Low Pressure) Processing Environment; Elsevier: Amsterdam, The Netherlands, 2010; pp. 73–145. [Google Scholar] [CrossRef]
- Vacuum Pump. ScienceDirect Topics in Agricultural and Biological Sciences; Elsevier: Amsterdam, The Netherlands, 2011; Chapter 6; Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/vacuum-pump (accessed on 10 September 2025).
- Fathy, N.A. Carbon Nanotubes Synthesis Using Carbonization of Pretreated Rice Straw through Chemical Vapor Deposition of Camphor. RSC Adv. 2017, 7, 28535–28541. [Google Scholar] [CrossRef]
- Azqandi, O.R.; Kalantarian, A.; Mollaee, M.; Sabeghenia, E. Growth of Vertical Forest-like Arrangement Carbon Nanotube Using CVD Technique. Int. J. Nanosci. 2025, 24, 2550001-58. [Google Scholar] [CrossRef]
- Guo, Z.; Guo, B.; Zhang, J.; Wu, G.; Zhao, H.; Jia, J.; Meng, Q.; Zhao, Q. CVD Diamond Processing Tools: A Review. J. Adv. Res. 2024, 74, 333–358. [Google Scholar] [CrossRef]
- Simionescu, O.-G.; Brîncoveanu, O.; Romaniţan, C.; Vulpe, S.; Avram, A. AStep-By-Step Development of Vertically Aligned Carbon Nanotubes by Plasma-Enhanced Chemical Vapor Deposition. Coatings 2022, 12, 943. [Google Scholar] [CrossRef]
- Wu, Q.; Ji, X.; Yu, P.; Cao, Y.; Li, Z.; Huang, Y. Scalable growth of vertical graphene nanosheets by thermal chemical vapor deposition. Nat. Protoc. 2025. [Google Scholar] [CrossRef]
- Schropp, I.; Stannowski, B.; Brockhoff, A.M.; Veenendaal, P.A.; Rath, J.K. Hot Wire CVD of Heterogeneous and Polycrystalline Silicon Semiconducting Thin Films for Application in Thin Film Transistors and Solar Cells. Mater. Phys. Mech. 2000, 2, 73–78. [Google Scholar]
- Lau, K.K.S.; Caulfield, J.A.; Gleason, K.K. Structure and Morphology of Fluorocarbon Films Grown by Hot Filament Chemical Vapor Deposition. Chem. Mater. 2000, 12, 3032–3037. [Google Scholar] [CrossRef]
- Wang, J.-T. CVD and Its Related Theories in Inorganic Synthesis and Materials Preparations. In Modern Inorganic Synthetic Chemistry; Xu, R., Pang, W., Huo, Q., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 151–171. [Google Scholar] [CrossRef]
- Li, Q.; Hao, H.; Zhang, J.; Liu, L. Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition. Carbon 2004, 42, 829–835. [Google Scholar] [CrossRef]
- Sundaram, R.M.; Windle, A.H. Effect of Carbon Precursors on the Structure and Properties of Continuously Spun Carbon Nanotube Fibers. Sci. Adv. Mater. 2015, 7, 643–653. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.K.; Singh, D.P. Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs. Renew. Sustain. Energy Rev. 2016, 58, 976–1006. [Google Scholar] [CrossRef]
- Shiga, D. Plasma Bubble Could Protect Astronauts on Mars Trip. New Scientist. Available online: https://www.newscientist.com/article/dn9567-plasma-bubble-could-protect-astronauts-on-mars-trip.html (accessed on 10 September 2025).
- Hot Mettle. New Scientist. Available online: https://www.newscientist.com/article/mg17823904.800-hot-mettle.html?full=true (accessed on 10 September 2025).
- Hershcovitch, A. Plasma Window Technology for Propagating Particle Beams and Radiation from Vacuum to Atmosphere. Brookhaven National Laboratory. Available online: http://www.techbriefs.com/content/view/1834/32/ (accessed on 10 September 2025).
- Crystec Technology Trading GmbH. Plasma Enhanced Chemical Vapor Deposition—Technology and Equipment. Crystec. Available online: http://www.crystec.com/tridepe.htm (accessed on 10 September 2025).
- Tavares, J.; Swanson, E.J.; Coulombe, S. Plasma Synthesis of Coated Metal Nanoparticles with Surface Properties Tailored for Dispersion. Plasma Process. Polym. 2008, 5, 759–769. [Google Scholar] [CrossRef]
- Schnebele, E.K. Silicon; U.S. Geological Survey: Reston, VA, USA, 2025; pp. 160–161. Available online: https://pubs.usgs.gov/periodicals/mcs2025/mcs2025-silicon.pdf (accessed on 10 September 2025).
- Hatfield, A.K. Cement; U.S. Geological Survey: Reston, VA, USA, 2024; pp. 54–55. Available online: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-cement.pdf (accessed on 10 September 2025).
- Dorval Dion, C.A.; Tavares, J.R. Photo-Initiated Chemical Vapor Deposition as a Scalable Particle Functionalization Technology (a Practical Review). Powder Technol. 2013, 239, 484–491. [Google Scholar] [CrossRef]
- LPCVD. Crystec. Available online: http://www.crystec.com/klllpcvde.htm (accessed on 10 September 2025).
- Single Walled Carbon Nanotubes. Cheap Tubes. Available online: https://www.cheaptubes.com/product-category/single-walled-carbon-nanotubes/ (accessed on 10 September 2025).
- Carbon Nanotubes. Nanografi. Available online: https://shop.nanografi.com/carbon-nanotubes/ (accessed on 10 September 2025).
- wenwen@0506. How Much Do Carbon Nanotubes Cost? GrapheneRich. Available online: https://graphenerich.com/how-much-do-carbon-nanotubes-cost/ (accessed on 10 September 2025).
- Spasenovic, M. The Price of Graphene. Graphenea. Available online: https://www.graphenea.com/pages/graphene-price (accessed on 10 September 2025).
- Pathak, A.D.; Potphode, D.; Sharma, C.S. Graphitization Induced Structural Transformation of Candle Soot Carbon into Carbon Nano-Onion as a Functional Anode for Metal-Ion Batteries. Mater. Adv. 2022, 3, 3610–3619. [Google Scholar] [CrossRef]
- Hamzan, N.B.; Yi, C.; Sadri, R.; Lee, M.K.; Chang, L.; Tripathi, M.; Dalton, A.B.; Goh, B.T. Controlled Physical Properties and Growth Mechanism of Manganese Silicide Nanorods. J. Alloys Compd. 2021, 851, 156693. [Google Scholar] [CrossRef]
- Shah, V.A.; Dobbie, A.; Myronov, M.; Leadley, D.R. Reverse Graded SiGe/Ge/Si Buffers for High-Composition Virtual Substrates. J. Appl. Phys. 2010, 107, 064304. [Google Scholar] [CrossRef]
- Shareef, I.A.; Rubloff, G.W.; Anderle, M.; Gill, W.N.; Cotte, J.; Kim, D.H. Subatmospheric Chemical Vapor Deposition Ozone/TEOS Process for SiO2 Trench Filling. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1995, 13, 1888–1892. [Google Scholar] [CrossRef]
- Wahl, G.; Davies, P.B.; Bunshah, R.F.; Joyce, B.A.; Bain, C.D.; Wegner, G.; Remmers, M.; Walsh, F.C.; Hieber, K.; Sundgren, J.; et al. Thin Films in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar] [CrossRef]
- Asatekin, A.; Barr, M.C.; Baxamusa, S.H.; Lau, K.K.S.; Tenhaeff, W.; Xu, J.; Gleason, K.K. Designing Polymer Surfaces via Vapor Deposition. Mater. Today 2010, 13, 26–33. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Styles, M.J.; Grenci, G.; Gorp, H.V.; Vanderlinden, W.; De Feyter, S.; Falcaro, P.; De Vos, D.; Vereecken, P.M.; Ameloot, R. Chemical Vapour Deposition of Zeolitic Imidazolate Framework Thin Films. Nat. Mater. 2016, 15, 304–310. [Google Scholar] [CrossRef]
- Hofstetter, K.; Licht, G.; Licht, S. Industrial scaling of molten carbonate electrolytic carbon capture and production of graphene allotropes. DeCarbon 2025, 9, 100122. [Google Scholar] [CrossRef]
- Xu, M.; Futaba, D.N.; Yamada, T.; Yumura, M.; Hata, K. Carbon Nanotubes with Temperature-Invariant Viscoelasticity from −196° to 1000 °C. Science 2010, 330, 1364–1368. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Saeed, A.; Ul-Hamid, A. A review featuring the fundamentals and advancements of polymer/CNT nanocomposite application in aerospace industry. Polym. Bull. 2021, 78, 539–557. [Google Scholar] [CrossRef]
- Kaminski, I. Climate Impact of Shipping under Growing Scrutiny Ahead of Key Meeting. The Guardian, 22 June 2023. Available online: https://www.theguardian.com/environment/2023/jun/22/climate-impact-shipping-under-growing-scrutiny-imo-meeting-seascape (accessed on 10 September 2025).
- Walker, T.R.; Adebambo, O.; Del Aguila Feijoo, M.C.; Elhaimer, E.; Hossain, T.; Edwards, S.J.; Morrison, C.E.; Romo, J.; Sharma, N.; Taylor, S.; et al. Environmental Effects of Marine Transportation. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 3, pp. 505–530. [Google Scholar] [CrossRef]
- Schrooten, L.; De Vlieger, I.; Panis, L.I.; Chiffi, C.; Pastori, E. Emissions of Maritime Transport: A European Reference System. Sci. Total Environ. 2009, 408, 318–323. [Google Scholar] [CrossRef]
- Trading Economics. Lithium. Available online: https://tradingeconomics.com/commodity/lithium (accessed on 22 February 2025).
- Licht, G.; Wang, X.; Hofstetter, K.; Licht, S. A new electrolyte for molten carbonate decarbonization. Commun. Chem. 2024, 7, 211. [Google Scholar] [CrossRef]
- IndexBox Inc. Carbonates; Strontium Carbonate Price in China—2025. Available online: https://www.indexbox.io/search/carbonates-strontium-carbonate-price-china/ (accessed on 22 February 2025).
- IndexBox Inc. Carbonates; Strontium Carbonate Price in the United States—2025. Available online: https://www.indexbox.io/search/carbonates-strontium-carbonate-price-the-united-states/ (accessed on 11 October 2024).
- Kusnir, D.; Sanden, B.A. Energy Requirements of Carbon Nanoparticle Production. J. Ind. Eco. 2008, 12, 360–375. [Google Scholar] [CrossRef]
- Zhai, P.; Isaacs, J.A.; Eckelman, M.J. Net energy benefits of carbon nanotube applications. Appl. Energy 2016, 173, 624–634. [Google Scholar] [CrossRef]
- Hofstetter, K.; Licht, G.; Licht, S. Comparative Analysis of Amine, Lime, and Molten Carbonate Electrolytic CO2 Carbon Capture. ECS Adv. 2025, 4, 031003. [Google Scholar] [CrossRef]
- World Bank. State and Trends of Carbon Pricing 2025. World Bank. Available online: https://www.worldbank.org/en/publication/state-and-trends-of-carbon-pricing (accessed on 11 October 2025).
- Teah, H.Y.; Sato, T.; Namiki, K.; Asaka, M.; Feng, K.; Noda, S. Life Cycle Greenhouse Gas Emissions of Long and Pure Carbon Nanotubes Synthesized via On-Substrate and Fluidized-Bed Chemical Vapor Deposition. ACS Sustain. Chem. Eng. 2020, 8, 1730–1740. [Google Scholar] [CrossRef]
CVD Variant | CVD Benefits and Limitations |
---|---|
Catalytic CVD (CCVD) | Selects and controls product purity. |
Ultra-high vacuum, high vacuum, vacuum, low pressure, sub-atmospheric, atmospheric, or high-pressure CVD | Controls feed gas/substrate interactions. |
Floating catalyst CVD (FCCVD) | Catalyst is “floating” in the gas and not fixed to a substrate |
Fluidized Bed CVD (FBCVD) | This method integrates CVD with a fluidized bed reactor, where solid particles are suspended in a gas stream, mimicking fluid behavior. This ensures uniform and consistent exposure of each particle to reactive gas precursors. |
Microwave Enhanced or radio-assisted CVD. | Increases feed gas reactivity and catalyst directed growth. Increase equipment complexity and can lead to product inhomogeneity. |
Timed release of the CVD input gas | Involves successively introducing precursors into the reactor rather than continuously. This offers significant control over the deposition process, but adds complexity, cost, incomplete evacuation of chamber and scaling challenges. |
Plasma-enhanced CVD (PECVD) | Plasma-enhanced CVD (PECVD) exposes the chamber or substrate to plasma, accelerating reactions but creating more extreme, energy-intensive condition as shown in Figure 4. In remote PECVD, plasma is generated away from the substrate or chamber walls, reducing damage from direct contact but limiting catalytic use of the substrate. |
High-temperature CVD | Enhanced production rate; limits useable feed gases and selectivity. |
Hot wall CVD | CVD walls are kept hot actively to promote reaction conditions. Heating may prevent or increase deposition of some materials in a beneficial or harmful manner, and is energy intensive. |
Cold Wall CVD | Actively cooling CVD chamber walls can improve reaction selectivity and deposition on cooler surfaces by promoting condensation from gas or plasma phases, but is energy intensive. |
Atomic-layer CVD | Deposits successive layers of different compounds to make layered, crystalline films as exemplified in Figure 5. |
GNC Variant | Comparison of properties (in addition to those in 2D graphene) |
Graphene | High strength, high conductivity, durability. |
CNT | record strength, higher conductivity, ultra-black, charge storage |
Nano-bamboo CNT | Solid graphite core, doped catalyst, EMF periodicity shielding |
Nano-pearl CNT | Hollow graphite core, doped catalyst, EMF periodicity shielding |
Single/double/spiral Helical CNT | Chiral light filters and polarizers, chiral molecule selectors, nano-inducers, piezo-electric effect, nano-springs |
Magnetic CNT | Water filtration, recycling |
Doped CNT | Recovering, recycling, medical target delivery |
CNT assemblies (e.g., nano trees) | Enhanced production rate; limits useable feed gases and selectivity. |
conical carbon nanofiber | Solid graphite core, doped catalyst, EMF periodicity shielding |
Solid core carbon nano-onions | Solid lubricants, EMF shield, |
Hollow core carbon nano-onions | Li-ion battery enhanced charge storage |
Metal coated CNTs | Catalysts, energy storage |
Nano- platelets | Catalysts, energy storage |
Nano-scaffolds | High surface area charge storage, catalytic activity, low reflectivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licht, G.; Licht, S. Carbon Nanotube Production Pathways: A Review of Chemical Vapor Deposition and Electrochemical CO2 Conversion, Such as C2CNT. Crystals 2025, 15, 887. https://doi.org/10.3390/cryst15100887
Licht G, Licht S. Carbon Nanotube Production Pathways: A Review of Chemical Vapor Deposition and Electrochemical CO2 Conversion, Such as C2CNT. Crystals. 2025; 15(10):887. https://doi.org/10.3390/cryst15100887
Chicago/Turabian StyleLicht, Gad, and Stuart Licht. 2025. "Carbon Nanotube Production Pathways: A Review of Chemical Vapor Deposition and Electrochemical CO2 Conversion, Such as C2CNT" Crystals 15, no. 10: 887. https://doi.org/10.3390/cryst15100887
APA StyleLicht, G., & Licht, S. (2025). Carbon Nanotube Production Pathways: A Review of Chemical Vapor Deposition and Electrochemical CO2 Conversion, Such as C2CNT. Crystals, 15(10), 887. https://doi.org/10.3390/cryst15100887