Dual-Wavelength Phase Transition Random Lasers with Switchable Modes
Abstract
1. Introduction
2. Design and Fabrication
2.1. Design Principles
2.2. Preparation Method
2.3. Optical Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, H. Review on latest developments in random lasers with coherent feedback. J. Phys. A-Math. Gen. 2005, 38, 10497–10535. [Google Scholar] [CrossRef]
- de Matos, C.J.S.; Menezes, L.D.S.; Brito-Silva, A.M.; Gámez, M.A.M.; Gomes, A.S.L.; De Araújo, C.B. Random fiber laser. Phys. Rev. Lett. 2007, 99, 4. [Google Scholar] [CrossRef]
- Abegao, L.M.G.; Silva, L.H.P.; Cocca, L.H.Z.; Romero, A.L.S.; Lopes, L.H.T.; Mello, H.; Barbosa, M.S.; De Boni, L. The integration of cerium oxide nanoparticles in solid-state random laser development. Eur. Phys. J. Plus 2024, 139, 617. [Google Scholar] [CrossRef]
- Wan, Y.; Li, Z.H.; Wang, W.Z.; Gao, L.M.; Liu, Z.X.; Xu, L.H.L.; Wang, H.Z.; Gao, S.; Liu, X.L.; Cai, Y.J. Low-Spatial-Coherence Random Lasers Enhanced by TiN/Graphene Self-Assembly Structures for High-Resolution Imaging in Chaotic Fluid Environments. J. Light. Technol. 2024, 42, 5989–5995. [Google Scholar] [CrossRef]
- He, S.L.; Zhang, X.J.; Du, W.Y.; Li, S.Q.; Kuai, Y.; Xu, F.; Liu, Y.; Cao, Z.G.; Yu, B.L.; Hu, Z.J. Non-invasive imaging using a low-spatial-coherence multimode random polymer fiber laser. Opt. Lett. 2024, 49, 4733–4736. [Google Scholar] [CrossRef]
- Wang, J.; Qin, J.Q.; Zhan, Z.J.; Hu, Z.P.; Huang, S.H.; Zhou, F.X.; Li, Q.; Liu, Z.Z.; Zhang, Z.Y.; Leng, Y.X.; et al. Speckle-Free Imaging Based on a Quasi-2D Perovskite Random Laser with a Subwavelength Thickness. ACS Photonics 2024, 11, 1664–1672. [Google Scholar] [CrossRef]
- Hu, J.; Li, R.F.; Hu, Z.J.; Li, H.S.; Yang, Y.Z.; Li, H.T.; Lv, J.L.; Yu, Q.; Zhao, Y.K.; Yu, B.L.; et al. Implementation of Er-doped random fiber laser self-mixing sensor with ultra-limit sensitivity. APL Photonics 2024, 9, 036113. [Google Scholar] [CrossRef]
- Han, B.; Ma, Y.X.; Zhao, Y.; Wu, H. The Applications of Random Fiber Lasers in Optical Fiber Communication and Sensing Systems: A Review. IEEE Trans. Instrum. Meas. 2024, 73, 7001017. [Google Scholar] [CrossRef]
- Bian, Y.X.; Xue, H.Y.; Wang, Z.N. Programmable Random Lasing Pluses Based on Waveguide-Assisted Random Scattering Feedback. Laser Photonics Rev. 2021, 15, 2000506. [Google Scholar] [CrossRef]
- Zeng, Z.M.; Hu, M.N.; Liu, J.Y.; Wang, Z.N. A biconcave-shaped random laser array for unclonable coding. Nano Energy 2024, 132, 110358. [Google Scholar] [CrossRef]
- Lopez-Bastida, A.; Mercado-Zúñiga, C.; Bornacelli, J.; de la Rosa, J.M.; Torres-Torres, C. All-Optical Encryption Controlled by Multiphotonic Absorption in Carbon Nanotubes. Photonics 2024, 11, 1029. [Google Scholar] [CrossRef]
- Pincheira, P.I.R.; Silva, A.F.; Fewo, S.I.; Carreño, S.J.M.; Moura, A.L.; Raposo, E.P.; Gomes, A.S.L.; de Araújo, C.B. Observation of photonic paramagnetic to spin-glass transition in a specially designed TiO2 particle-based dye-colloidal random laser. Opt. Lett. 2016, 41, 3459–3462. [Google Scholar] [CrossRef] [PubMed]
- Du, W.Y.; Hu, L.; Xia, J.Y.; Zhang, L.; Li, S.Q.; Kuai, Y.; Cao, Z.G.; Xu, F.; Liu, Y.; Zhou, K.M.; et al. Observation of the photonic Hall effect and photonic magnetoresistance in random lasers. Nat. Commun. 2024, 15, 4589. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Bhaktha, B.N.S. Replica symmetry breaking in coherent and incoherent random lasing modes. Opt. Lett. 2021, 46, 5169–5172. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.T.; Yin, J.M.; Zhao, Y.X.; Zhang, Y.N.; Lv, H.; Zhang, S.Y.; Wang, X. Incoherent and coherent random lasing in electrospun fiber-embedded glass microtube systems with different sizes. Opt. Commun. 2025, 592, 132281. [Google Scholar] [CrossRef]
- Shi, X.Y.; Shen, K.Y.; Bian, Y.X.; Song, W.T.; Ruan, J.; Wang, Z.; Zhai, T.R. Programmable complex pumping field induced color-on-demand random lasing in fiber-integrated microbelts for speckle free imaging. Sci. China-Inf. Sci. 2023, 66, 222401. [Google Scholar] [CrossRef]
- Liu, J.Y.; Shen, H.H.; Wang, X.L.; Yuan, H.Y.; Zeng, Z.M.; Bian, Y.X.; Wang, Z.N. Fiber-assisted cascade-excited colorful random lasing with ring-shaped angular spectrum for imaging. Opt. Laser Technol. 2025, 192, 113489. [Google Scholar] [CrossRef]
- Redding, B.; Choma, M.A.; Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photonics 2012, 6, 355–359. [Google Scholar] [CrossRef]
- Tong, J.H.; Shi, X.Y.; Wang, Y.; Han, L.; Zhai, T.R. Flexible plasmonic random laser for wearable humidity sensing. Sci. China-Inf. Sci. 2021, 64, 222401. [Google Scholar] [CrossRef]
- Tong, J.H.; Ruan, J.; Iqbal, N.; Ma, H.; Ge, K.; Lin, C.Y.; Zhai, T.R. Tunable random lasers via phase transition for information encryption. Opt. Express 2023, 31, 31661–31669. [Google Scholar] [CrossRef]
- Cao, L.M.; Wang, W.Z.; Li, Z.H.; Xu, L.L.; Cai, Y.J.; Wan, Y. Dynamic coded encryption using tunable spatial coherence of random lasers. Opt. Express 2025, 33, 9825–9833. [Google Scholar] [CrossRef]
- Fruhling, C.; Wang, K.; Chowdhury, S.; Xu, X.H.; Simon, J.; Kildishev, A.; Dou, L.T.; Meng, X.G.; Boltasseva, A.; Shalaev, V.M. Coherent Random Lasing in Subwavelength Quasi-2D Perovskites. Laser Photonics Rev. 2023, 17, 2200314. [Google Scholar] [CrossRef]
- Ye, L.H.; Cheng, Z.X.; Zhang, Z.; Hong, S.Q.; Zhao, Q. Coherent random fiber laser emission from CdSe/ZnS quantum dots. Nanotechnology 2024, 35, 505707. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Li, Q.; Li, S.M.; Ye, F.M.; Xiong, S.Y.; Wang, L.Z.; He, Y.T.; Zhao, Z.T.; Wang, G.M.; Zhang, W.F.; et al. Generation of dual-wavelength Q-switched pulses and bright-dark pulses pairs in an erbium-doped fiber laser with NbS2 as saturable absorber. Opt. Mater. 2024, 154, 115724. [Google Scholar] [CrossRef]
- Ismail, W.Z.W.; Dawes, J.M. Synthesis and Characterization of Silver-Gold Bimetallic Nanoparticles for Random Lasing. Nanomaterials 2022, 12, 11. [Google Scholar] [CrossRef]
- Machado, Y.D.R.; Germano, G.C.M.; Pecoraro, E.; Costa, A.; Carvalho, I.C.S. Impact of SiO2 nanoparticle morphology on scattering efficiency for random lasers. Opt. Mater. 2024, 148, 114775. [Google Scholar] [CrossRef]
- Marinho, S.J.; Jesus, L.M.; Barbosa, L.B.; Ardila, D.R.; Alencar, M.; Rodrigues, J.J. Bi-chromatic random laser from alumina porous ceramic infiltrated with rhodamine B. Laser Phys. Lett. 2015, 12, 055801. [Google Scholar] [CrossRef]
- Pham, N.V.; Nguyen, Q.N.; Nguyen, T.V.; Nguyen, T.A.; Ta, V.D. High quality factor, monodisperse micron-sized random lasers based on porous PLGA spheres. Opt. Lett. 2024, 49, 6165–6168. [Google Scholar] [CrossRef]
- Meng, X.; Ma, J.; Xie, K.; Hong, L.; Zhang, J.; Hu, Z. Tunable random laser in flexible hydrogel. Opt. Mater. 2021, 115, 111027. [Google Scholar] [CrossRef]
- Yu, M.Q.; Li, S.Q.; Kuai, Y.; Liu, Y.; Cao, Z.G.; Xu, F.; Xie, F.; Xie, K.; Lu, L.; Yu, B.L.; et al. Hydrogel optical fiber random laser. Opt. Laser Technol. 2023, 164, 109458. [Google Scholar] [CrossRef]
- Shang, Z.Z.; Wang, Z.; Dai, G. Stability-Enhanced Emission Based on Biophotonic Crystals in Liquid Crystal Random Lasers. Materials 2023, 16, 200. [Google Scholar] [CrossRef] [PubMed]
- He, H.H.; Russell-Hill, P.; Blau, W.J.; Kislyakov, I.M.; Rosanov, N.N.; Dong, N.N.; Wang, J. Random lasing from rhodamine 6G-microsphere doped photonic crystal fibers. Opt. Commun. 2025, 583, 131754. [Google Scholar] [CrossRef]
- Zhu, R.; Tong, J.H.; Shi, X.Y.; Lin, C.Y.; Zhai, T.R. Phase transition modulated fiber-shaped random lasers. Opt. Express 2025, 33, 13430–13438. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.; Tong, J.; Shi, X.; Lin, C.; Zhai, T. Dual-Wavelength Phase Transition Random Lasers with Switchable Modes. Crystals 2025, 15, 853. https://doi.org/10.3390/cryst15100853
Zhu R, Tong J, Shi X, Lin C, Zhai T. Dual-Wavelength Phase Transition Random Lasers with Switchable Modes. Crystals. 2025; 15(10):853. https://doi.org/10.3390/cryst15100853
Chicago/Turabian StyleZhu, Ran, Junhua Tong, Xiaoyu Shi, Chengyou Lin, and Tianrui Zhai. 2025. "Dual-Wavelength Phase Transition Random Lasers with Switchable Modes" Crystals 15, no. 10: 853. https://doi.org/10.3390/cryst15100853
APA StyleZhu, R., Tong, J., Shi, X., Lin, C., & Zhai, T. (2025). Dual-Wavelength Phase Transition Random Lasers with Switchable Modes. Crystals, 15(10), 853. https://doi.org/10.3390/cryst15100853