Experimental Investigation and Machine Learning Modeling of Electrical Discharge Machining Characteristics of AZ31/B4C/GNPs Hybrid Composites
Abstract
1. Introduction
1.1. Electrical Discharge Machining of Mg MMCs
1.2. Role of Machine Learning in EDM of MMCs
1.3. Research Gaps Identified
1.4. Motivation of This Study
2. Materials and Methods
2.1. Fabrication of Composites
2.2. Experimentation
3. Machine Learning (ML) Techniques
3.1. Linear Regression
3.2. Polynomial Regression
3.3. Random Forest (RF) Regression
3.4. Gradient Boost Regression
4. Results and Discussion
4.1. Analysis on the Impact of EDM Parameters on MRR
4.2. Analysis on the Effect of EDM Parameters on SR
4.3. SEM Analysis of EDMed AZ31 MMCs
4.4. Performance Analysis of ML Models
5. Conclusions
- According to the study’s findings, the current (I) is the most significant factor in relation to the material removal rate (MRR) with 44.93% of contribution, with reinforcement percentage (R), pulse on time, and pulse off time following in that order.
- The main effect S/N graphs of MRR demonstrate that the optimal parameters for attaining a greater MRR are R = 2 wt.%, Toff = 15 µs, Ton = 75 µs, and I = 9 A.
- The study’s findings demonstrate that the current (I) possesses the greatest significance concerning SR, with 51.39% of contribution, succeeded by reinforcement percentage (R), Ton, and Toff. The ideal parameters for minimizing the SR are R = 2 wt.%, Toff = 5 µs, Ton = 25 µs, and I = 3 A.
- Prediction models were developed using LR, PR, RF, and GBR methods to predict MRR and SR of AZ31 composites. The GBR model provided the best predictive performance, outperforming the other methods with an accuracy of 94.68% and 92.68% for MRR and SR, respectively.
6. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
EDM | Electrical Discharge Machining |
GNPs | Graphene Nano Platelets |
MRR | Material Removal Rate |
SR | Surface Roughness |
ML | Machine Learning |
LR | Linear Regression |
PR | Polynomial Regression |
RF | Random Forest |
GBR | Gradient Boost Regression |
R | Reinforcement Percentage |
I | Current |
Ton | Pulse on Time |
Toff | Pulse off Time |
R2 | Coefficient of Determination |
MSE | Mean Square Error |
RMSE | Root Mean Square Error |
References
- Kumar, D.S.; Sasanka, C.T.; Ravindra, K.; Suman, K.N.S. Magnesium and Its Alloys in Automotive Applications—A Review. Am. J. Mater. Sci. Technol. 2015, 4, 12–30. [Google Scholar] [CrossRef]
- Dhanunjay Kumar Ammisetti, K.; Sai Sarath, S.S.H.K. A Review on Mechanical and Wear Characteristics of Magnesium Metal Matrix Composites. J. Tribol. 2024, 147, 020801. [Google Scholar] [CrossRef]
- Goka, S.; Manjaiah, M.; Davidson, M.J. Study on Mechanical, Microstructural and Corrosion Analysis of Wire Arc Additive Manufactured AZ31 Magnesium Alloy. Met. Mater. Int. 2024, 31, 2104–2122. [Google Scholar] [CrossRef]
- Shen, M.; Zhu, X.; Han, B.; Ying, T.; Jia, J. Dry Sliding Wear Behaviour of AZ31 Magnesium Alloy Strengthened by Nanoscale SiCp. J. Mater. Res. Technol. 2022, 16, 814–823. [Google Scholar] [CrossRef]
- Selvamani, S.T.; Premkumar, S.; Vigneshwar, M.; Hariprasath, P.; Palanikumar, K. Influence of Carbon Nano Tubes on Mechanical, Metallurgical and Tribological Behavior of Magnesium Nanocomposites. J. Magnes. Alloys 2017, 5, 326–335. [Google Scholar] [CrossRef]
- Dash, D.; Singh, R.; Samanta, S.; Rai, R.N. Influence of TiC on Microstructure, Mechanical and Wear Properties of Magnesium Alloy (AZ91D) Matrix Composites. J. Sci. Ind. Res. 2020, 79, 164–169. [Google Scholar] [CrossRef]
- Aatthisugan, I.; Razal Rose, A.; Selwyn Jebadurai, D. Mechanical and Wear Behaviour of AZ91D Magnesium Matrix Hybrid Composite Reinforced with Boron Carbide and Graphite. J. Magnes. Alloys 2017, 5, 20–25. [Google Scholar] [CrossRef]
- Taylor, P.; Girish, B.M.; Satish, B.M.; Sarapure, S.; Somashekar, D.R. Wear Behavior of Magnesium Alloy AZ91 Hybrid Composite Materials. Tribol. Trans. 2015, 58, 481–489. [Google Scholar] [CrossRef]
- Somasundaram, M.; Pradeep Kumar, J. Effect of Process Parameters in Electric Discharge Machining of AZ31 Magnesium Alloy; Springer: Singapore, 2021; pp. 3–13. [Google Scholar]
- Lakshmanan, P.; Kumanan, G.; Arunkumar, L.; Amith, S.C. Experimental Investigations of Material Removal Rate on Mg/SiCp-Flyash Hybrid Metal Matrix Composites by Electrical Discharge Machining. Mater. Today Proc. 2021, 46, 986–990. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A. Nanopowder-Mixed EDM on Biodegradable Mg Alloy AZ31B for Improved Surface Characteristics and Biocompatibility. J. Micromanufacturing 2024, 15, 25165984241237368. [Google Scholar] [CrossRef]
- Aydin, F.; Durgut, R. Estimation of Wear Performance of AZ91 Alloy under Dry Sliding Conditions Using Machine Learning Methods. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2021, 31, 125–137. [Google Scholar] [CrossRef]
- Prakash, C.; Singh, S.; Singh, M.; Verma, K.; Chaudhary, B.; Singh, S. Multi-Objective Particle Swarm Optimization of EDM Parameters to Deposit HA-Coating on Biodegradable Mg-Alloy. Vacuum 2018, 158, 180–190. [Google Scholar] [CrossRef]
- Ammisetti, D.K.; Kruthiventi, S.S.H. Experimental Analysis and Artificial Neural Network Teaching–Learning-Based Optimization Modeling on Electrical Discharge Machining Characteristics of AZ91 Composites. J. Mater. Eng. Perform. 2023, 33, 11718–11735. [Google Scholar] [CrossRef]
- Yu, J.M.; Wen, T.; Yue, Y.W.; Wu, S.R.; Lei, F.; Xiao, B. Parameters Optimization of AZ31 Magnesium Alloy Processing Map Based on BP Neural Network. J. Mater. Eng. 2013, 3, 27–31. [Google Scholar] [CrossRef]
- Kumar, P.; Parkash, R. Experimental Investigation and Optimization of EDM Process Parameters for Machining of Aluminum Boron Carbide (Al–B4C) Composite. Mach. Sci. Technol. 2016, 20, 330–348. [Google Scholar] [CrossRef]
- Moudood, M.A.; Sabur, A.; Ali, M.Y.; Jaafard, I.H. Effect of Peak Current on Material Removal Rate for Electrical Discharge Machining of Non-Conductive Al2O3 Ceramic. Adv. Mater. Res. 2014, 845, 730–734. [Google Scholar] [CrossRef]
- Dirisenapu, G.; Salavaravu, L.; Kolli, M.; Bandi, R.; Sahu, A.K.; Satyanarayana, K. Optimization of Process Variables on Electrical Discharge Machining of Novel Al7010/B4C/BN Hybrid Metal Matrix Nanocomposite. E3S Web Conf. 2023, 391, 01170. [Google Scholar] [CrossRef]
- Gopalakannan, S.; Senthilvelan, T. Optimization of Machining Parameters for EDM Operations Based on Central Composite Design and Desirability Approach. J. Mech. Sci. Technol. 2014, 28, 1045–1053. [Google Scholar] [CrossRef]
- Kumar, K.R.; Sreebalaji, V.S. Modeling and Analysis on the Influence of Reinforcement Particle Size during EDM of Aluminum (Al/3.25Cu/8.5Si)/Fly Ash Composites. J. Adv. Manuf. Syst. 2016, 15, 189–207. [Google Scholar] [CrossRef]
- Kavimani, V.; Prakash, K.S.; Thankachan, T. Influence of Machining Parameters on Wire Electrical Discharge Machining Performance of Reduced Graphene Oxide/Magnesium Composite and Its Surface Integrity Characteristics. Compos. Part B Eng. 2019, 167, 621–630. [Google Scholar] [CrossRef]
- Kottala, R.K.; Balasubramanian, K.R.; Jinshah, B.S.; Divakar, S.; Chigilipalli, B.K. Experimental investigation and machine learning modelling of phase change material-based receiver tube for natural circulated solar parabolic trough system under various weather conditions. J. Therm. Anal. Calorim. 2023, 148, 7101–7124. [Google Scholar] [CrossRef]
Element | Zn | Al | Si | Fe | Cu | Mn | Ni | Others | Mg |
Content (%) | 1.05 | 3.12 | 0.1 | 0.005 | 0.03 | 0.15 | 0.002 | 0.02 | 89.523 |
S. No | AZ31 (wt.%) | GNPs (wt.%) | B4C (wt.%) | Total (wt.%) |
1 | 98.5 | 1 | 1 | 2 |
2 | 98 | 1 | 2 | 3 |
3 | 97 | 1 | 3 | 4 |
S. No | Factor | Units | L1 | L2 | L3 |
---|---|---|---|---|---|
1 | Reinforcement percentage (R) | wt.% | 2 | 3 | 4 |
2 | Current (I) | A | 3 | 6 | 9 |
3 | Pulse on time (Ton) | µs | 25 | 50 | 75 |
4 | Pulse off time (Toff) | µs | 5 | 10 | 15 |
S. No | Reinforcement | Toff | Ton | I | MRR | SR |
---|---|---|---|---|---|---|
wt.% | µs | µs | A | g/min | µm | |
1 | 2 | 5 | 25 | 3 | 0.08250 ± 0.002 | 2.247 ± 0.170 |
2 | 2 | 5 | 50 | 6 | 0.21560 ± 0.008 | 3.433 ± 0.179 |
3 | 2 | 5 | 75 | 9 | 0.36900 ± 0.018 | 4.987 ± 0.179 |
4 | 3 | 10 | 25 | 3 | 0.09724 ± 0.029 | 2.600 ± 0.401 |
5 | 3 | 10 | 50 | 6 | 0.12903 ± 0.005 | 4.751 ± 0.152 |
6 | 3 | 10 | 75 | 9 | 0.36666 ± 0.007 | 5.149 ± 0.253 |
7 | 4 | 15 | 25 | 3 | 0.08343 ± 0.019 | 4.007 ± 0.502 |
8 | 4 | 15 | 50 | 6 | 0.14810 ± 0.007 | 4.722 ± 0.394 |
9 | 4 | 15 | 75 | 9 | 0.17640 ± 0.012 | 6.720 ± 0.427 |
10 | 3 | 15 | 25 | 6 | 0.26920 ± 0.015 | 4.473 ± 0.438 |
11 | 3 | 15 | 50 | 9 | 0.47360 ± 0.014 | 5.127 ± 0.245 |
12 | 3 | 15 | 75 | 3 | 0.12100 ± 0.046 | 2.967 ± 0.432 |
13 | 4 | 5 | 25 | 6 | 0.11240 ± 0.010 | 3.487 ± 0.213 |
14 | 4 | 5 | 50 | 9 | 0.20400 ± 0.012 | 4.973 ± 0.278 |
15 | 4 | 5 | 75 | 3 | 0.17890 ± 0.011 | 3.160 ± 0.236 |
16 | 2 | 10 | 25 | 6 | 0.16580 ± 0.009 | 3.032 ± 0.156 |
17 | 2 | 10 | 50 | 9 | 0.38400 ± 0.025 | 4.533 ± 0.432 |
18 | 2 | 10 | 75 | 3 | 0.22850 ± 0.017 | 1.872 ± 0.117 |
19 | 4 | 10 | 25 | 9 | 0.29660 ± 0.021 | 4.493 ± 0.413 |
20 | 4 | 10 | 50 | 3 | 0.08910 ± 0.006 | 3.357 ± 0.220 |
21 | 4 | 10 | 75 | 6 | 0.23100 ± 0.018 | 4.383 ± 0.264 |
22 | 2 | 15 | 25 | 9 | 0.45380 ± 0.007 | 3.633 ± 0.211 |
23 | 2 | 15 | 50 | 3 | 0.13040 ± 0.043 | 2.727 ± 0.260 |
24 | 2 | 15 | 75 | 6 | 0.66660 ± 0.007 | 4.400 ± 0.296 |
25 | 3 | 5 | 25 | 9 | 0.10869 ± 0.008 | 3.007 ± 0.301 |
26 | 3 | 5 | 50 | 3 | 0.11570 ± 0.024 | 3.393 ± 0.395 |
27 | 3 | 5 | 75 | 6 | 0.27340 ± 0.026 | 4.080 ± 0.344 |
Level | R | Toff | Ton | I |
---|---|---|---|---|
1 | −11.84 | −15.42 | −16.04 | −18.36 |
2 | −14.69 | −13.66 | −14.33 | −14.00 |
3 | −16.15 | −13.60 | −12.32 | −10.33 |
Delta | 4.31 | 1.82 | 3.73 | 8.03 |
Rank | 2 | 4 | 3 | 1 |
Larger is better |
Source | DF | Seq SS | Adj SS | Adj MS | F | p | Contribution (%) |
---|---|---|---|---|---|---|---|
R | 2 | 86.41 | 86.41 | 43.206 | 18.60 | 0.003 | 13.34 |
Toff | 2 | 19.15 | 19.15 | 9.575 | 4.12 | 0.075 | 2.96 |
Ton | 2 | 62.59 | 62.59 | 31.295 | 13.47 | 0.006 | 9.66 |
I | 2 | 291.04 | 291.04 | 145.520 | 62.65 | 0.000 | 44.93 |
Toff*Ton | 4 | 52.98 | 52.98 | 13.245 | 5.70 | 0.030 | 8.18 |
Toff*I | 4 | 64.82 | 64.82 | 16.206 | 6.98 | 0.019 | 10.01 |
Ton*I | 4 | 56.85 | 56.85 | 14.212 | 6.12 | 0.026 | 8.78 |
Residual Error | 6 | 13.94 | 13.94 | 2.323 | 2.14 | ||
Total | 26 | 647.78 | |||||
Model Summary | |||||||
S | R-Sq | R-Sq(adj) | |||||
1.5240 | 97.85% | 90.68% |
Level | R | Toff | Ton | I |
---|---|---|---|---|
1 | −10.300 | −10.985 | −10.522 | −9.124 |
2 | −11.679 | −11.187 | −12.093 | −12.127 |
3 | −12.585 | −12.392 | −11.949 | −13.313 |
Delta | 2.285 | 1.407 | 1.570 | 4.189 |
Rank | 2 | 4 | 3 | 1 |
Smaller is better |
Source | DF | Seq SS | Adj SS | Adj MS | F | p | Contribution (%) |
---|---|---|---|---|---|---|---|
R | 2 | 23.836 | 23.836 | 11.9178 | 42.13 | 0.000 | 14.59 |
Toff | 2 | 10.417 | 10.417 | 5.2085 | 18.41 | 0.003 | 6.38 |
Ton | 2 | 13.567 | 13.567 | 6.7833 | 23.98 | 0.001 | 8.31 |
I | 2 | 83.922 | 83.922 | 41.9610 | 148.32 | 0.000 | 51.39 |
Toff*Ton | 4 | 10.137 | 10.137 | 2.5344 | 8.96 | 0.011 | 6.20 |
Toff*I | 4 | 4.280 | 4.280 | 1.0699 | 3.78 | 0.072 | 2.62 |
Ton*I | 4 | 15.445 | 15.445 | 3.8613 | 13.65 | 0.004 | 9.46 |
Residual Error | 6 | 1.697 | 1.697 | 0.2829 | 1.05 | ||
Total | 26 | 163.301 | |||||
Model Summary | |||||||
S | R-Sq | R-Sq(adj) | |||||
0.5319 | 98.96% | 95.50% |
Data | ML Model | MSE | RMSE | R2 |
---|---|---|---|---|
MRR | LR | 0.02583 | 0.1607 | 74.58 |
PR | 0.01639 | 0.1280 | 82.36 | |
RF | 0.00582 | 0.07629 | 89.24 | |
GBR | 0.00264 | 0.05138 | 94.68 | |
SR | LR | 0.2473 | 0.4973 | 72.83 |
PR | 0.1568 | 0.3959 | 78.92 | |
RF | 0.0837 | 0.2893 | 85.53 | |
GBR | 0.0574 | 0.2396 | 92.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammisetti, D.K.; Kruthiventi, S.S.H.; Arunachalam, K.P.; Pulgar, V.P.; Kottala, R.K.; Praveenkumar, S.; Rao, P.S. Experimental Investigation and Machine Learning Modeling of Electrical Discharge Machining Characteristics of AZ31/B4C/GNPs Hybrid Composites. Crystals 2025, 15, 844. https://doi.org/10.3390/cryst15100844
Ammisetti DK, Kruthiventi SSH, Arunachalam KP, Pulgar VP, Kottala RK, Praveenkumar S, Rao PS. Experimental Investigation and Machine Learning Modeling of Electrical Discharge Machining Characteristics of AZ31/B4C/GNPs Hybrid Composites. Crystals. 2025; 15(10):844. https://doi.org/10.3390/cryst15100844
Chicago/Turabian StyleAmmisetti, Dhanunjay Kumar, Satya Sai Harish Kruthiventi, Krishna Prakash Arunachalam, Victor Poblete Pulgar, Ravi Kumar Kottala, Seepana Praveenkumar, and Pasupureddy Srinivasa Rao. 2025. "Experimental Investigation and Machine Learning Modeling of Electrical Discharge Machining Characteristics of AZ31/B4C/GNPs Hybrid Composites" Crystals 15, no. 10: 844. https://doi.org/10.3390/cryst15100844
APA StyleAmmisetti, D. K., Kruthiventi, S. S. H., Arunachalam, K. P., Pulgar, V. P., Kottala, R. K., Praveenkumar, S., & Rao, P. S. (2025). Experimental Investigation and Machine Learning Modeling of Electrical Discharge Machining Characteristics of AZ31/B4C/GNPs Hybrid Composites. Crystals, 15(10), 844. https://doi.org/10.3390/cryst15100844