Microvoids Enhance the Low-Cycle Fatigue Resistance of TiAl Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Effect of Microvoid on Low-Cycle Fatigue Life
3.2. Effect of Microvoids on Low-Cycle Fatigue Microstructure
4. Conclusions
- (1)
- The microvoid-containing model demonstrated superior fatigue performance, manifested by lower plastic strain energy density and extended fatigue life. This is seen in lower plastic strain energy density and extended fatigue life. Multiple mechanisms contribute to this enhancement. Microvoid compression and dislocation absorption alleviate stress concentration. Twin boundary migration absorbs strain energy. HCP phase transformation and fault reorganization strengthen dislocation-pinning effects.
- (2)
- Microvoids significantly reduce the yield stress of both single-crystal and polycrystal γ-TiAl alloys. However, the difference in average flow stress between microvoid-containing and microvoid-free models is minimal. All models exhibit cyclic softening, followed by stabilization during low-cycle fatigue loading. In the presence of microvoids, single-crystal models show higher stress amplitudes. In the polycrystal model, the microvoid delayed stress softening. This occurs through mechanisms such as twin boundary formation and dislocation interactions.
- (3)
- Microvoids in single crystals grow via a shear loop mechanism, yet exhibit significant volume fluctuations due to limited lattice constraints. With increasing cycle numbers, SFTs form and effectively impede dislocation motion. In polycrystal systems, the progressive reduction in microvoid volume fraction indicates gradual microvoid collapse and deactivation. This happens through dislocation-mediated and interface-constrained mechanisms. The preferential formation of Lomer–Cottrell locks and twin boundaries around microvoids obstructs dislocation movement. These effects significantly enhance the material’s fatigue resistance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hosseini, N.; Nieto-Fuentes, J.C.; Dakshinamurthy, M.; Rodríguez-Martínez, J.A.; Vadillo, G. The effect of material orientation on void growth. Int. J. Plast. 2022, 148, 103149. [Google Scholar] [CrossRef]
- Pushkareva, M.; Sket, F.; Segurado, J.; Llorca, J.; Yandouzi, M.; Weck, A. Effect of grain orientation and local strains on void growth and coalescence in titanium. Mater. Sci. Eng. A 2019, 760, 258–266. [Google Scholar] [CrossRef]
- Barker, V.M.; Steven Johnson, W.; Adair, B.S.; Antolovich, S.D.; Staroselsky, A. Load and temperature interaction modeling of fatigue crack growth in a Ni-base superalloy. Int. J. Fatigue 2013, 52, 95–105. [Google Scholar] [CrossRef]
- Sunder, R.; Porter, W.J.; Ashbaugh, N.E. Fatigue voids and their significance. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 1015–1024. [Google Scholar] [CrossRef]
- Gao, T.; Song, H.; Wang, B.; Gao, Y.; Liu, Y.; Xie, Q.; Chen, Q.; Xiao, Q.; Liang, Y. Molecular dynamics simulations of tensile response for FeNiCrCoCu high-entropy alloy with voids. Int. J. Mech. Sci. 2023, 237, 107800. [Google Scholar] [CrossRef]
- Ling, C.; Besson, J.; Forest, S.; Tanguy, B.; Latourte, F.; Bosso, E. An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations. Int. J. Plast. 2016, 84, 58–87. [Google Scholar] [CrossRef]
- Naoe, T.; Endoh, H.; Fuchino, F.; Miyata, M.; Miyake, H.; Takahashi, T.; Fujimoto, T. Mechanism of void formation in TiN/AlSiCu/TiN/plasma-enhanced tetraethyl orthosilicate SiO2 multi-layer structures via high-temperature stress migration. Mater. Sci. Semicond. Process. 2018, 83, 239–248. [Google Scholar] [CrossRef]
- Lu, L.; Li, J.; Su, C.-Y.; Sun, P.-Y.; Chang, L.; Zhou, B.-B.; He, X.-H.; Zhou, C.-Y. Research on fatigue crack growth behavior of commercial pure titanium base metal and weldment at different temperatures. Theor. Appl. Fract. Mech. 2019, 100, 215–224. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, X.; Pang, J.; Zou, M.; Tao, Y.; Tao, X.; Zou, C.; Yang, Y.; Liu, J.; Liu, J.; et al. Pore-induced defects during thermo-mechanical fatigue of a fourth-generation single crystal superalloy. Mater. Res. Lett. 2023, 11, 678–687. [Google Scholar] [CrossRef]
- Wang, F.; He, L.; Zeng, X.; Qi, Z.; Song, B.; Yang, X. Triaxial tension-induced damage behavior of nanocrystalline NiTi alloy and its dependence on grain size. J. Mater. Sci. Technol. 2021, 77, 90–99. [Google Scholar] [CrossRef]
- Yan, J.; Ma, X.; Zhao, W.; Tang, H.; Zhu, C.; Cai, S. Crystal Structure and Carbon Vacancy Hardening of (W0.5Al0.5)C1−x Prepared by a Solid-State Reaction. ChemPhysChem 2005, 6, 2099–2103. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhou, Y.C.; Sun, C.Q. Nanocavity hardening impact of broken bonds at the negatively curved surface. arXiv 2008, arXiv:0801.0772. [Google Scholar]
- Qi, Y.; Chen, X.; Feng, M. Molecular dynamics-based analysis of the effect of voids and HCP-Phase inclusion on deformation of single-crystal CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 2020, 791, 139444. [Google Scholar] [CrossRef]
- Gao, S.; Li, W.; Ma, Y.; Wang, B.; Dong, X.; Li, S.; Liu, J.; Yang, Y.; Qu, S.; Chen, Z.; et al. Knowledge assisted machine learning to clarify pore influence on fatigue life of forging/additive hybrid manufactured Ti-17 alloy. J. Mater. Inform. 2024, 4, 25. [Google Scholar] [CrossRef]
- Chen, J.-J.; Xie, H.; Liu, L.-Z.; Guan, H.; You, Z.; Zou, L.; Jin, H.-J. Strengthening Gold with Dispersed Nanovoids. Science 2024, 385, 629–633. [Google Scholar] [CrossRef]
- Şopu, D.; Soyarslan, C.; Sarac, B.; Bargmann, S.; Stoica, M.; Eckert, J. Structure-property relationships in nanoporous metallic glasses. Acta Mater. 2016, 106, 199–207. [Google Scholar] [CrossRef]
- Chen, G.; Peng, Y.; Zheng, G.; Qi, Z.; Wang, M.; Yu, H.; Dong, C.; Liu, C.T. Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat. Mater. 2016, 15, 876–881. [Google Scholar] [CrossRef]
- Zheng, G.; Tang, B.; Zhao, S.; Wang, W.Y.; Chen, X.; Zhu, L.; Li, J. Evading the strength-ductility trade-off at room temperature and achieving ultrahigh plasticity at 800 °C in a TiAl alloy. Acta Mater. 2022, 225, 117585. [Google Scholar] [CrossRef]
- Xiang, H.; Chen, Y.; Qi, Z.; Zheng, G.; Chen, F.; Cao, Y.; Liu, X.; Zhou, B.; Chen, G. Mechanical behavior of TiAl alloys. Sci. China Technol. Sci. 2023, 66, 2457–2480. [Google Scholar] [CrossRef]
- Tang, F.-L.; Cai, H.-M.; Bao, H.-W.; Xue, H.-T.; Lu, W.-J.; Zhu, L.; Rui, Z.-Y. Molecular dynamics simulations of void growth in γ-TiAl single crystal. Comput. Mater. Sci. 2014, 84, 232–237. [Google Scholar] [CrossRef]
- Xu, X.-T.; Tang, F.-L.; Xue, H.-T.; Yu, W.-Y.; Zhu, L.; Rui, Z.-Y. Molecular dynamics simulations of void shrinkage in γ-TiAl single crystal. Comput. Mater. Sci. 2015, 107, 58–65. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, H.; Li, P.; Xiang, H. Effect of Temperature on the Low-Cycle Fatigue Behavior of Polycrystalline TiAl Alloys. Materials 2025, 18, 3147. [Google Scholar] [CrossRef] [PubMed]
- Zope, R.R.; Mishin, Y. Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B 2003, 68, 024102. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Li, P.; Chen, Y.; Liu, X.; Wang, X.H.; Chen, F.R.; Qi, Z.X.; Zheng, G.; Xiang, H.G.; Chen, G. Strengthening in gradient TiAl alloys. J. Mater. Sci. Technol. 2023, 166, 98–105. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Stukowski, A.; Albe, K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 2010, 18, 085001. [Google Scholar] [CrossRef]
- Faken, D.; Jónsson, H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 1994, 2, 279–286. [Google Scholar] [CrossRef]
- Wang, W.; Balint, D.S.; Shirzadi, A.A.; Wang, Y.; Lee, J.; Aucott, L.; Jiang, J. Imparted benefits on mechanical properties by achieving grain boundary migration across voids. Acta Mater. 2023, 256, 119103. [Google Scholar] [CrossRef]
- Li, D.M.; Nam, W.J.; Lee, C.S. A strain energy-based approach to the low-cycle fatigue damage mechanism in a high-strength spring steel. Metall. Mater. Trans. A 1998, 29, 1431–1439. [Google Scholar] [CrossRef]
- Wang, X.G.; Crupi, V.; Jiang, C.; Feng, E.S.; Guglielmino, E.; Wang, C.S. Energy-based approach for fatigue life prediction of pure copper. Int. J. Fatigue 2017, 104, 243–250. [Google Scholar] [CrossRef]
- Wang, M.; Pang, J.C.; Zhang, M.X.; Liu, H.Q.; Li, S.X.; Zhang, Z.F. Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy. Mater. Sci. Eng. A 2018, 715, 62–72. [Google Scholar] [CrossRef]
- Ostergren, W.J. A Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated Temperature, Low Cycle Fatigue. J. Test. Eval. 1976, 4, 327–339. [Google Scholar] [CrossRef]
- Wu, L.; Yu, W.; Hu, S.; Shen, S. Size-dependent stability of stacking fault tetrahedron in coherent twin boundary bicrystal: Comparisons among Al, Ni, Cu and Ag. Comput. Mater. Sci. 2018, 155, 256–265. [Google Scholar] [CrossRef]
- Tan, L.; Yao, C.; Zhang, D.; Ren, J.; Zhou, Z.; Zhang, J. Evolution of surface integrity and fatigue properties after milling, polishing, and shot peening of TC17 alloy blades. Int. J. Fatigue 2020, 136, 105630. [Google Scholar] [CrossRef]
- Curran, D.R.; Seaman, L.; Shockey, D.A. Dynamic failure in solids. Phys. Today 1977, 30, 46–55. [Google Scholar] [CrossRef]
- Rawat, S.; Raole, P.M. Molecular dynamics investigation of void evolution dynamics in single crystal iron at extreme strain rates. Comput. Mater. Sci. 2018, 154, 393–404. [Google Scholar] [CrossRef]
- Ikkurthi, V.R.; Hemani, H.; Sugandhi, R.; Rawat, S.; Pahari, P.; Warrier, M.; Chaturvedi, S. Multi-scale Computational Approach for Modelling Spallation at High Strain Rates in Single-Crystal Materials. Procedia Eng. 2017, 173, 1177–1184. [Google Scholar] [CrossRef]
- Cao, H.; Rui, Z.; Chen, W.; Feng, R.; Yan, C. Crack propagation mechanism of γ-TiAl alloy with pre-existing twin boundary. Sci. China Technol. Sci. 2019, 62, 1605–1615. [Google Scholar] [CrossRef]
- Xiang, H.; Guo, W. Synergistic effects of twin boundary and phase boundary for enhancing ultimate strength and ductility of lamellar TiAl single crystals. Int. J. Plast. 2022, 150, 103197. [Google Scholar] [CrossRef]
- Jing, P.; Yuan, L.; Shivpuri, R.; Xu, C.; Zhang, Y.; Shan, D.; Guo, B. Evolution of spherical nanovoids within copper polycrystals during plastic straining: Atomistic investigation. Int. J. Plast. 2018, 100, 122–141. [Google Scholar] [CrossRef]
- Lu, P.; Ge, Y.; Jin, X.; Li, P.; Ji, X.; Zhao, D.; Wang, Z.; Fan, X. A dislocation density-based model for the temperature dependent anomalous behaviors of nickel-based single-crystal superalloy. Mech. Mater. 2022, 170, 104326. [Google Scholar] [CrossRef]
Type | Model | (%) | (GPa) | Ostergren Parameter (GPa) |
---|---|---|---|---|
polycrystal | microvoid | 4.40 | 2.33 | 10.25 |
microvoid-free | 4.50 | 2.37 | 10.67 | |
single crystal | microvoid | 11.66 | 2.15 | 25.07 |
microvoid-free | 20.85 | 1.87 | 38.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Peng, W.; Zhao, C.; Chen, Z.; Ding, H.; Li, W.; Zhou, J. Microvoids Enhance the Low-Cycle Fatigue Resistance of TiAl Alloys. Crystals 2025, 15, 833. https://doi.org/10.3390/cryst15100833
Jin H, Peng W, Zhao C, Chen Z, Ding H, Li W, Zhou J. Microvoids Enhance the Low-Cycle Fatigue Resistance of TiAl Alloys. Crystals. 2025; 15(10):833. https://doi.org/10.3390/cryst15100833
Chicago/Turabian StyleJin, Hailiang, Wenya Peng, Chunling Zhao, Zhilai Chen, Hao Ding, Wei Li, and Junyan Zhou. 2025. "Microvoids Enhance the Low-Cycle Fatigue Resistance of TiAl Alloys" Crystals 15, no. 10: 833. https://doi.org/10.3390/cryst15100833
APA StyleJin, H., Peng, W., Zhao, C., Chen, Z., Ding, H., Li, W., & Zhou, J. (2025). Microvoids Enhance the Low-Cycle Fatigue Resistance of TiAl Alloys. Crystals, 15(10), 833. https://doi.org/10.3390/cryst15100833