High-Q Resonances Induced by Toroidal Dipole Bound States in the Continuum in Terahertz Metasurfaces
Abstract
1. Introduction
2. Theory and Model Design
2.1. Metal Metasurface
2.2. Theoretical Formula
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bohm, D.; Weinstein, M. The Self-Oscillations of a Charged Particle. Phys. Rev. 1948, 74, 1789–1798. [Google Scholar] [CrossRef]
- Davidson, M.P. Quantum Wave Equations and Non-Radiating Electromagnetic Sources. Ann. Phys. 2007, 322, 2195–2210. [Google Scholar] [CrossRef]
- Goedecke, G.H. Classically Radiationless Motions and Possible Implications for Quantum Theory. Phys. Rev. 1964, 135, B281–B288. [Google Scholar] [CrossRef]
- Nemkov, N.A.; Basharin, A.A.; Fedotov, V.A. Nonradiating Sources, Dynamic Anapole, and Aharonov-Bohm Effect. Phys. Rev. B 2017, 95, 165134. [Google Scholar] [CrossRef]
- Koshelev, K.; Favraud, G.; Bogdanov, A.; Kivshar, Y.; Fratalocchi, A. Nonradiating Photonics with Resonant Dielectric Nanostructures. Nanophotonics 2019, 8, 725–745. [Google Scholar] [CrossRef]
- Baryshnikova, K.V.; Smirnova, D.A.; Luk’yanchuk, B.S.; Kivshar, Y.S. Optical Anapoles: Concepts and Applications. Adv. Opt. Mater. 2019, 7, 1801350. [Google Scholar] [CrossRef]
- Azzam, S.I.; Kildishev, A.V. Photonic Bound States in the Continuum: From Basics to Applications. Adv. Opt. Mater. 2021, 9, 2001469. [Google Scholar] [CrossRef]
- Limonov, M.F. Fano Resonances in Photonics. Nat. Photonics 2017, 11, 543–554. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound States in the Continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef]
- Friedrich, H.; Wintgen, D. Interfering Resonances and Bound States in the Continuum. Phys. Rev. A 1985, 32, 3231–3242. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Liu, T.; Xiao, S. Symmetry-Protected Bound States in the Continuum Supported by All-Dielectric Metasurfaces. Phys. Rev. A 2019, 100, 063803. [Google Scholar] [CrossRef]
- Koshelev, K.; Lepeshov, S.; Liu, M.; Bogdanov, A.; Kivshar, Y. Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. Phys. Rev. Lett. 2018, 121, 193903. [Google Scholar] [CrossRef] [PubMed]
- Overvig, A.C.; Malek, S.C.; Carter, M.J.; Shrestha, S.; Yu, N. Selection Rules for Quasibound States in the Continuum. Phys. Rev. B 2020, 102, 035434. [Google Scholar] [CrossRef]
- Sadrieva, Z.; Frizyuk, K.; Petrov, M.; Kivshar, Y.; Bogdanov, A. Multipolar Origin of Bound States in the Continuum. Phys. Rev. B 2019, 100, 115303. [Google Scholar] [CrossRef]
- Sadrieva, Z.F.; Belyakov, M.A.; Balezin, M.A.; Kapitanova, P.V.; Nenasheva, E.A.; Sadreev, A.F.; Bogdanov, A.A. Experimental Observation of a Symmetry-Protected Bound State in the Continuum in a Chain of Dielectric Disks. Phys. Rev. A 2019, 99, 53804. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Z.; Du, Y.; Qin, J. Ultrasensitive Terahertz Sensing with High-Q Toroidal Dipole Resonance Governed by Bound States in the Continuum in All-Dielectric Metasurface. Nanophotonics 2021, 10, 1295–1307. [Google Scholar] [CrossRef]
- Kawanishi, K.; Shimatani, A.; Lee, K.J.; Inoue, J.; Ura, S.; Magnusson, R. Cross-Stacking of Guided-Mode Resonance Gratings for Polarization-Independent Flat-Top Filtering. In Proceedings of the 2019 24th Microoptics Conference (MOC), Toyama, Japan, 17–20 November 2019. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Jiang, H.; Lai, Z.; Chen, H. Controlling the Spectral Width in Compound Waveguide Grating Structures. Opt. Lett. 2013, 38, 163. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Zhou, C. Polarization-Independent Toroidal Dipole Resonances Driven by Symmetry-Protected BIC in Ultraviolet Region. Opt. Express 2020, 28, 11983. [Google Scholar] [CrossRef]
- Ramesh, R.; Qing, N.; Alshehri, H.; Azeredo, B.; Liping, W. Design of Selective Metasurface Filter for Thermophotovoltaic Energy Conversion. ES Energy Environ. 2023, 22, 999. [Google Scholar] [CrossRef]
- Wu, M.; Ha, S.T.; Shendre, S.; Durmusoglu, E.G.; Koh, W.-K.; Abujetas, D.R.; Sánchez-Gil, J.A.; Paniagua-Domínguez, R.; Demir, H.V.; Kuznetsov, A.I. Room-Temperature Lasing in Colloidal Nanoplatelets via Mie-Resonant Bound States in the Continuum. Nano Lett. 2020, 20, 6005–6011. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, T.; Tian, J.; Sun, J.; Li, S.; De Leon, I.; Zaccaria, R.P.; Peng, L.; Gao, F.; Lin, X.; et al. Quasi-BIC Laser Enabled by High-Contrast Grating Resonator for Gas Detection. Nanophotonics 2022, 11, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, J.; Wu, L.; Zheng, C.; Yue, Z.; Li, H.; Song, C.; Ding, X.; Zhang, Y.; Yao, J. Bending Sensing Based on Quasi Bound States in the Continuum in Flexible Terahertz Metasurface. Adv. Opt. Mater. 2023, 11, 2300909. [Google Scholar] [CrossRef]
- Wu, F.; Wu, J.; Guo, Z.; Jiang, H.; Sun, Y.; Li, Y.; Ren, J.; Chen, H. Giant Enhancement of the Goos-Hänchen Shift Assisted by Quasibound States in the Continuum. Phys. Rev. Appl. 2019, 12, 14028. [Google Scholar] [CrossRef]
- Srivastava, Y.K.; Ako, R.T.; Gupta, M.; Bhaskaran, M.; Sriram, S.; Singh, R. Terahertz Sensing of 7 Nm Dielectric Film with Bound States in the Continuum Metasurfaces. Appl. Phys. Lett. 2019, 115, 151105. [Google Scholar] [CrossRef]
- Koshelev, K.; Tang, Y.; Li, K.; Choi, D.-Y.; Li, G.; Kivshar, Y. Nonlinear Metasurfaces Governed by Bound States in the Continuum. ACS Photonics 2019, 6, 1639–1644. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y.; Lin, Y.; Xiang, J.; Feng, T.; Cao, Q.; Li, J.; Lan, S.; Liu, J. High- Q Quasibound States in the Continuum for Nonlinear Metasurfaces. Phys. Rev. Lett. 2019, 123, 253901. [Google Scholar] [CrossRef]
- Li, N.; Xu, Z.; Dong, Y.; Hu, T.; Zhong, Q.; Fu, Y.H.; Zhu, S.; Singh, N. Large-Area Metasurface on CMOS-Compatible Fabrication Platform: Driving Flat Optics from Lab to Fab. Nanophotonics 2020, 9, 3071–3087. [Google Scholar] [CrossRef]
- Mikheeva, E.; Koshelev, K.; Choi, D.-Y.; Kruk, S.; Lumeau, J.; Abdeddaim, R.; Voznyuk, I.; Enoch, S.; Kivshar, Y. Photosensitive Chalcogenide Metasurfaces Supporting Bound States in the Continuum. Opt. Express 2019, 27, 33847. [Google Scholar] [CrossRef]
- Chen, W.; Yongzheng, W.; Jingbo, S.; Ji, Z. Recent Progress on Optical Frequency Conversion in Nonlinear Metasurfaces and Nanophotonics. ES Mater. Manuf. 2022, 17, 1–13. [Google Scholar] [CrossRef]
- Han, S.; Cong, L.; Srivastava, Y.K.; Qiang, B.; Rybin, M.V.; Kumar, A.; Jain, R.; Lim, W.X.; Achanta, V.G.; Prabhu, S.S.; et al. All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum. Adv. Mater. 2019, 31, 1901921. [Google Scholar] [CrossRef]
- Karl, N.; Vabishchevich, P.P.; Liu, S.; Sinclair, M.B.; Keeler, G.A.; Peake, G.M.; Brener, I. All-Optical Tuning of Symmetry Protected Quasi Bound States in the Continuum. Appl. Phys. Lett. 2019, 115, 141103. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zheng, C.; Yue, Z.; Wang, S.; Li, M.; Zhao, H.; Zhang, Y.; Yao, J. Free Switch between Bound States in the Continuum (BIC) and Quasi-BIC Supported by Graphene-Metal Terahertz Metasurfaces. Carbon 2021, 182, 506–515. [Google Scholar] [CrossRef]
- Tan, T.C.; Srivastava, Y.K.; Ako, R.T.; Wang, W.; Bhaskaran, M.; Sriram, S.; Al-Naib, I.; Plum, E.; Singh, R. Active Control of Nanodielectric-Induced THz Quasi-BIC in Flexible Metasurfaces: A Platform for Modulation and Sensing. Adv. Mater. 2021, 33, 2100836. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, C.; Chen, D.; You, S.; Wang, X.; Wang, L.; Jin, L.; Huang, L.; Wang, D.; Miroshnichenko, A.E. Active Quasi-BIC Metasurfaces Assisted by Epsilon-near-Zero Materials. Opt. Express 2023, 31, 13125. [Google Scholar] [CrossRef]
- He, Y.; Guo, G.; Feng, T.; Xu, Y.; Miroshnichenko, A.E. Toroidal Dipole Bound States in the Continuum. Phys. Rev. B 2018, 98, 161112. [Google Scholar] [CrossRef]
- Papasimakis, N.; Fedotov, V.A.; Savinov, V.; Raybould, T.A.; Zheludev, N.I. Electromagnetic Toroidal Excitations in Matter and Free Space. Nat. Mater. 2016, 15, 263–271. [Google Scholar] [CrossRef]
- Radescu, E.E.; Vaman, G. Exact Calculation of the Angular Momentum Loss, Recoil Force, and Radiation Intensity for an Arbitrary Source in Terms of Electric, Magnetic, and Toroid Multipoles. Phys. Rev. E 2002, 65, 046609. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Chichkov, B.N. Multipole Decompositions for Directional Light Scattering. Phys. Rev. B 2019, 100, 125415. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Fischer, T.; Reinhardt, C.; Chichkov, B.N. Optical Theorem and Multipole Scattering of Light by Arbitrarily Shaped Nanoparticles. Phys. Rev. B 2016, 94, 205434. [Google Scholar] [CrossRef]
- Savinov, V.; Papasimakis, N.; Tsai, D.P.; Zheludev, N.I. Optical Anapoles. Commun. Phys. 2019, 2, 69. [Google Scholar] [CrossRef]
- Díaz-Escobar, E.; Bauer, T.; Pinilla-Cienfuegos, E.; Barreda, Á.I.; Griol, A.; Kuipers, L.; Martínez, A. Radiationless Anapole States in On-Chip Photonics. Light Sci. Appl. 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, A.E.; Evlyukhin, A.B.; Yu, Y.F.; Bakker, R.M.; Chipouline, A.; Kuznetsov, A.I.; Luk’yanchuk, B.; Chichkov, B.N.; Kivshar, Y.S. Nonradiating Anapole Modes in Dielectric Nanoparticles. Nat. Commun. 2015, 6, 8069. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-W.; Chen, W.T.; Wu, P.C.; Fedotov, V.A.; Zheludev, N.I.; Tsai, D.P. Toroidal Lasing Spaser. Sci. Rep. 2013, 3, 1237. [Google Scholar] [CrossRef] [PubMed]
- Zdagkas, A.; McDonnell, C.; Deng, J.; Shen, Y.; Li, G.; Ellenbogen, T.; Papasimakis, N.; Zheludev, N.I. Observation of Toroidal Pulses of Light. Nat. Photon. 2022, 16, 523–528. [Google Scholar] [CrossRef]
- Hong, I.; Hong, C.; Tutanov, O.S.; Massick, C.; Castleberry, M.; Zhang, Q.; Jeppesen, D.K.; Higginbotham, J.N.; Franklin, J.L.; Vickers, K.; et al. Anapole-Assisted Low-Power Optical Trapping of Nanoscale Extracellular Vesicles and Particles. Nano Lett. 2023, 23, 7500–7507. [Google Scholar] [CrossRef]
- Hong, I.; Anyika, T.; Hong, C.; Yang, S.; Ndukaife, J.C. Hybrid Optical and Diffusiophoretic Nanomanipulation Using All-Dielectric Anapole-Enhanced Thermonanophotonics. ACS Photonics 2023, 10, 4038–4044. [Google Scholar] [CrossRef]
- Conteduca, D.; Brunetti, G.; Barth, I.; Quinn, S.D.; Ciminelli, C.; Krauss, T.F. Multiplexed Near-Field Optical Trapping Exploiting Anapole States. ACS Nano 2023, 17, 16695–16702. [Google Scholar] [CrossRef]
- Raybould, T.A.; Fedotov, V.A.; Papasimakis, N.; Kuprov, I.; Youngs, I.J.; Chen, W.T.; Tsai, D.P.; Zheludev, N.I. Toroidal Circular Dichroism. Phys. Rev. B 2016, 94, 35119. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Y.; Gao, Z.; Li, H.; Song, S.; Yu, J.; Zhao, T. Dual-Band Polarization-Insensitive Toroidal Dipole Quasi-Bound States in the Continuum in a Permittivity-Asymmetric All-Dielectric Meta-Surface. Opt. Express 2022, 30, 4084. [Google Scholar] [CrossRef]
- Dmitriev, V.; Kupriianov, A.S.; Silva Santos, S.D.; Tuz, V.R. Symmetry Analysis of Trimer-Based All-Dielectric Metasurfaces with Toroidal Dipole Modes. J. Phys. D Appl. Phys. 2021, 54, 115107. [Google Scholar] [CrossRef]
- Algorri, J.F.; Zografopoulos, D.C.; Ferraro, A.; García-Cámara, B.; Beccherelli, R.; Sánchez-Pena, J.M. Ultrahigh-Quality Factor Resonant Dielectric Metasurfaces Based on Hollow Nanocuboids. Opt. Express 2019, 27, 6320. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Huang, Q.; He, H.; Zhao, Y.; Lin, X.; Lu, Y. All-Dielectric Metamaterial Analogue of Electromagnetically Induced Transparency and Its Sensing Application in Terahertz Range. Opt. Express 2019, 27, 16624. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Dong, G.-X.; Wang, B.-X.; Huang, W.-Q. High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator. Nanoscale Res. Lett. 2018, 13, 294. [Google Scholar] [CrossRef]
- Yahiaoui, R.; Tan, S.; Cong, L.; Singh, R.; Yan, F.; Zhang, W. Multispectral Terahertz Sensing with Highly Flexible Ultrathin Metamaterial Absorber. J. Appl. Phys. 2015, 118, 83103. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, Y.K.; Manjappa, M.; Singh, R. Sensing with Toroidal Metamaterial. Appl. Phys. Lett. 2017, 110, 121108. [Google Scholar] [CrossRef]
- Xu, J.; Liao, D.; Gupta, M.; Zhu, Y.; Zhuang, S.; Singh, R.; Chen, L. Terahertz Microfluidic Sensing with Dual-torus Toroidal Metasurfaces. Adv. Opt. Mater. 2021, 9, 2100024. [Google Scholar] [CrossRef]
- He, X.; Zhang, Q.; Lu, G.; Ying, G.; Wu, F.; Jiang, J. Tunable Ultrasensitive Terahertz Sensor Based on Complementary Graphene Metamaterials. RSC Adv. 2016, 6, 52212–52218. [Google Scholar] [CrossRef]
- Zhong, Y.; Du, L.; Liu, Q.; Zhu, L.; Meng, K.; Zou, Y.; Zhang, B. Ultrasensitive Specific Sensor Based on All-Dielectric Metasurfaces in the Terahertz Range. RSC Adv. 2020, 10, 33018–33025. [Google Scholar] [CrossRef]
- Beruete, M.; Jáuregui-López, I. Terahertz Sensing Based on Metasurfaces. Adv. Opt. Mater. 2020, 8, 1900721. [Google Scholar] [CrossRef]
- Kim, J.S.; Kwon, Y.S.; Ahn, S.; Choi, B.K.; Cho, S.Y.; Jeon, M.Y. Measurement of Refractive Indices and Absorption Coefficients for Glass Materials and Nematic Liquid Crystals in THz Frequency Band. J. Korean Phys. Soc. 2024, 84, 750–757. [Google Scholar] [CrossRef]
- Palik, E.D.; Ghosh, G. (Eds.) Handbook of Optical Constants of Solids; Academic Press: San Diego, CA, USA, 1998; ISBN 978-0-12-544420-0. [Google Scholar]
- Savinov, V.; Fedotov, V.A.; Zheludev, N.I. Toroidal Dipolar Excitation and Macroscopic Electromagnetic Properties of Metamaterials. Phys. Rev. B 2014, 89, 205112. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Reinhardt, C.; Evlyukhin, E.; Chichkov, B.N. Multipole Analysis of Light Scattering by Arbitrary-Shaped Nanoparticles on a Plane Surface. J. Opt. Soc. Am. B 2013, 30, 2589. [Google Scholar] [CrossRef]
- Algorri, J.F.; Zografopoulos, D.C.; Ferraro, A.; García-Cámara, B.; Vergaz, R.; Beccherelli, R.; Sánchez-Pena, J.M. Anapole Modes in Hollow Nanocuboid Dielectric Metasurfaces for Refractometric Sensing. Nanomaterials 2018, 9, 30. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.; Yang, L.; Zhao, T. High Q-Factor Multi-Fano Resonances in All-Dielectric Double Square Hollow Metamaterials. Opt. Laser Technol. 2021, 140, 107072. [Google Scholar] [CrossRef]
- Li, S.; Jiang, H.; Zhu, X.; Shi, Y.; Han, Z. A High-Sensitivity Refractive Index Sensor with Period-Doubling Plasmonic Metasurfaces to Engineer the Radiation Losses. ACS Appl. Opt. Mater. 2023, 1, 736–744. [Google Scholar] [CrossRef]
Material Simulation | FWHM (THz) | |||
---|---|---|---|---|
The Value of g2 (μm) | ||||
4 | 6 | 8 | 10 | |
Aluminum | 0 | 0.01162 | 0.02411 | 0.02996 |
PEC | 0 | 0.00359 | 0.01132 | 0.01966 |
Types of Resonance | Materials | Sensitivity (GHz/RIU) | FOM (RIU−1) | References |
---|---|---|---|---|
EIT | Silicon | 231 | 64.7 | [53] |
BIC | Gold | 105 | 7.501 | [54] |
Fano | Aluminum | 139.2 | - | [55] |
TD | Aluminum | 186 | - | [56] |
TD | Aluminum | 124.3 | - | [57] |
EIT | Graphene | 177.7 | 59.3 | [58] |
BIC | Silicon | 77 | 11.1 | [59] |
TD-BIC | Aluminum | 335 | 64.53 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Gao, Y. High-Q Resonances Induced by Toroidal Dipole Bound States in the Continuum in Terahertz Metasurfaces. Crystals 2025, 15, 96. https://doi.org/10.3390/cryst15010096
Guo L, Gao Y. High-Q Resonances Induced by Toroidal Dipole Bound States in the Continuum in Terahertz Metasurfaces. Crystals. 2025; 15(1):96. https://doi.org/10.3390/cryst15010096
Chicago/Turabian StyleGuo, Lincheng, and Yachen Gao. 2025. "High-Q Resonances Induced by Toroidal Dipole Bound States in the Continuum in Terahertz Metasurfaces" Crystals 15, no. 1: 96. https://doi.org/10.3390/cryst15010096
APA StyleGuo, L., & Gao, Y. (2025). High-Q Resonances Induced by Toroidal Dipole Bound States in the Continuum in Terahertz Metasurfaces. Crystals, 15(1), 96. https://doi.org/10.3390/cryst15010096