The Effect of Hatch Spacing on the Electrochemistry and Discharge Performance of a CeO2/Al6061 Anode for an Al-Air Battery via Selective Laser Melting
Abstract
1. Introduction
2. Experiment
2.1. Materials and Equipment
2.2. Experiment and Testing Methods
3. Results and Discussion
3.1. Surface Morphology and Density
3.2. Self-Corrosion Rate
3.3. Electrochemical Behavior
3.4. Discharge Property
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Lai, G.; Gu, J.; Liu, Z.; Wang, J. High specific capacity microfluidic Al-air battery with the double-side reactive anode. J. Power Sources 2024, 611, 234764. [Google Scholar] [CrossRef]
- Wu, G.X.; Wei, Z.S.; Li, S.Q.; Cui, L.Y.; Zhang, G.X.; Zeng, R.C. Corrosion inhibition of polyelectrolytes to the Al anode in Al-air battery: A comparative study of functional group effect. J. Power Sources 2024, 592, 233907. [Google Scholar] [CrossRef]
- Wan, H.; Wang, W.; Bu, L.X. Investigations on Mn shielding the negative effect of Fe in the aluminum alloy anodes used for Al-air batteries. J. Solid State Electrochem. 2024, 28, 2547–2560. [Google Scholar] [CrossRef]
- Kahveci, O.; Kaya, M.F.; Erol, H. Investigation of the AlB2 intermetallic phases effect on A-Zn-B alloys’ electrochemical performance in Al-air battery anodes. Appl. Phys. A 2023, 129, 234. [Google Scholar] [CrossRef]
- Wei, M.; Wang, K.; Pei, P.; Zhong, L.; Zuttel, A.; Pham, T.H. Zinc carboxylate optimization strategy for extending Al-air battery system’s lifetime. Appl. Energy 2023, 15, 350. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, W.; Guo, L.; Zhang, Q.; Wang, K.; Zheng, X. Corrosion inhibition of L-tryptophan on Al-5052 anode for Al-air battery with alkaline electrolyte. J. Power Sources 2023, 564, 232866. [Google Scholar] [CrossRef]
- Zhao, R.; He, P.; Yu, F.; Yang, J.; Sun, Z.; Hu, W. Performance improvement for aluminum-air battery by using alloying anodes prepared from commercially pure aluminum. J. Energy Storage 2023, 73, 108985. [Google Scholar] [CrossRef]
- Gürkan, K.; Fatih, Y.; İlyas, H. Characterization of the structural and tribological properties of medical Ti6Al4V alloy produced in different production parameters using selective laser melting. 3D Print. Addit. Manuf. 2019, 6, 253–261. [Google Scholar]
- Zhang, X.Z.; Chen, L.; Zhou, J.; Ren, N.F. Simulation and experimental studies on process parameters, microstructure and mechanical properties of selective laser melting of stainless steel 316L. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 402. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, K.; Pang, C.Y. Study on the effects of the processing parameters on the single tracks and the block support structures fabricated by selective laser melting. J. Laser Appl. 2024, 36, 012024. [Google Scholar] [CrossRef]
- Nandhakumar, R.; Venkatesan, K. A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: Microstructure, physical properties, tribological, and surface roughness. Mater. Today Commun. 2023, 35, 105538. [Google Scholar] [CrossRef]
- Qin, S.; Zhan, J.; Lu, Y.; Lin, J. Effect of energy input on the density and shape memory effect of NiTi alloy by selective laser melting in different hatch spacing. Mater. Technol. 2021, 37, 1263–1275. [Google Scholar] [CrossRef]
- Kaya, G.; Erguder, T.O.; Hacisalihoglu, E.Y. Wear and thermal behavior of TiAlN thin films onto Ti6Al4V alloy manufactured by selective laser melting method. 3D Print. Addit. Manuf. 2023, 10, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.L.; Liu, B.Y.; Tran, H.C. Optimized hatch space selection in double-scanning track selective laser melting process. Int. J. Adv. Manuf. Technol. 2019, 105, 2989–3006. [Google Scholar] [CrossRef]
- Li, Z.; Takano, N.; Mizutani, M. Material properties of selective laser melting additive-manufactured Ti6Al4V alloys with different porosities. Precis. Eng. 2023, 83, 142–151. [Google Scholar] [CrossRef]
- Enneti, R.K.; Morgan, R.; Atre, S.V. Effect of process parameters on the selective laser melting (SLM) of tungsten. Int. J. Refract. Met. Hard Mater. 2018, 71, 315–319. [Google Scholar] [CrossRef]
- Greco, S.; Gutzeit, K.; Hotz, H. Selective laser melting (SLM) of AISI 316L-impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density. Int. J. Adv. Manuf. Technol. 2020, 108, 1551–1562. [Google Scholar] [CrossRef]
- Hacisalihoglu, I.; Yiliz, F.; Celik, A. The effects of build orientation and hatch spacing on mechanical properties of medical Ti-6Al-4V alloy manufactured by selective laser melting. Mater. Sci. Eng. A 2021, 802, 140649. [Google Scholar] [CrossRef]
- Mao, Y.; Gao, Y.; Hu, J.; Shen, X.; Zhou, H. Effect of hatch spacing on the quality of Inconel 718 alloy part. Materials 2024, 17, 452. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Y.; Wen, W.; Ge, J.; Liang, J. Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless Steel: Modeling and experimental approaches. Materials 2019, 12, 50. [Google Scholar] [CrossRef]
- Feng, B.; Wan, C.; Zhang, Q.Q.; Ren, Y.; Cui, L.S.; Yang, Q.; Hao, S.J. Effect of laser hatch spacing on the pore defects, phase transformation and properties of selective. Mater. Sci. Eng. A 2022, 840, 142965. [Google Scholar] [CrossRef]
- Hu, Z.; Nie, X.; Qi, Y.; Zhang, H.; Zhu, H. Cracking criterion for high strength Al-Cu alloys fabricated by selective laser melting. Addit. Manuf. 2021, 37, 101709. [Google Scholar] [CrossRef]
- Pan, W.; Ye, Z.; Zhang, Y.; Liu, Y.; Liang, B.; Zhai, Z. Research on microstructure and properties of AlSi10Mg fabricated by selective laser melting. Materials 2022, 15, 2528. [Google Scholar] [CrossRef]
- Pekok, M.A.; Setchi, R.; Ryan, M.; Han, Q.Q.; Gu, D.D. Effect of process parameters on the microstructure and mechanical properties of AA2024 fabricated using selective laser melting. Int. J. Adv. Manuf. Technol. 2021, 112, 175–192. [Google Scholar] [CrossRef]
- Hu, Z.; Qi, Y.; Nagarajan, B.; Nie, X.; Zeng, X. Top surface roughness evolution during selective laser melting of AlCu5MnCdVA aluminum alloy. J. Manuf. Process. 2021, 64, 1180–1195. [Google Scholar] [CrossRef]
- Bi, J.; Chen, Y.B.; Chen, X.; Starostenkov, M.D.; Dong, G.J. Densification, microstructural features and tensile properties of selective laser melted AlMgSiScZr alloy from single track to block specimen. J. Cent. South Univ. 2021, 28, 1129–1143. [Google Scholar] [CrossRef]
- Katsoufis, P.; Mylona, V.; Politis, C.; Avgouropoulos, G.; Lianos, P. Study of some basic operation conditions of an Al-air battery using technical grade commercial aluminum. J. Power Sources 2020, 450, 227624. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, Y.; Li, Y.F.; Yang, K.; Lu, W.Y.; Peng, K.; Tian, Z.L. Investigation of commercial aluminum alloys as anode materials for alkaline aluminum-air batteries. Sustain. Energy Fuels 2022, 7, 300–309. [Google Scholar] [CrossRef]
- Pancrecious, J.K.; Deepa, J.P.; Jayan, V. Nanoceria induced grain refinement in electroless Ni-B-CeO2 composite coating for enhanced wear and corrosion resistance of Aluminium alloy. Surf. Coat. Technol. 2018, 356, 29–37. [Google Scholar] [CrossRef]
- Du, J.; Wang, Z.; Wei, Z.; Yao, J.; Song, H. An environmental friendly self-healing coating with Silane/Ce-ZSM-5 zeolite structure for corrosion protection of aluminum alloy. Surf. Coat. Technol. 2022, 436, 128290. [Google Scholar] [CrossRef]
Parameter | Laser Power | Scanning Speed | Hatch Spacing | Layer Thickness | Scanning Strategy |
---|---|---|---|---|---|
Value | 300 W | 1000 mm/s | 0.09, 0.11, 0.13, 0.15, 0.17 mm | 30 μm | Island |
Hatch Spacing | Electrochemical Parameters | ||
---|---|---|---|
E (v) | Icorr (A/cm2) | Rp (Ω∙cm2) | |
0.09 mm | −1.613 | 2.422 × 10−2 | 1.8 |
0.11 mm | −1.624 | 2.199 × 10−2 | 2.0 |
0.13 mm | −1.634 | 2.012 × 10−2 | 2.2 |
0.15 mm | −1.628 | 2.245 × 10−2 | 2.0 |
0.17 mm | −1.620 | 2.326 × 10−2 | 1.9 |
Hatch Spacing | 0.09 mm | 0.11 mm | 0.13 mm | 0.15 mm | 0.17 mm |
---|---|---|---|---|---|
L/Ω·cm2 | 1.012 × 10−6 | 9.472 × 10−7 | 4.721 × 10−7 | 9.525 × 10−7 | 9.550 × 10−7 |
Rs/Ω·cm2 | 1.225 | 1.357 | 1.508 | 1.254 | 1.349 |
CPE1/F·cm−2 | 4.394 × 10−3 | 1.445 × 10−3 | 1.134 × 10−3 | 2.453 × 10−4 | 1.169 × 10−3 |
R1/Ω·cm2 | 2.309 × 10−1 | 3.132 × 10−1 | 7.555 × 10−1 | 4.581 × 10−1 | 2.935 × 10−1 |
CPE2/F·cm−2 | 3.271 × 10−2 | 6.703 | 5.417 | 3.140 × 10−2 | 1.262 |
R2/Ω·cm2 | 1.140 × 10−1 | 1.980 × 10−1 | 3.182 × 10−1 | 1.377 × 10−1 | 1.586 × 10−1 |
ꭓ2 | 2.742 × 10−4 | 9.622 × 10−4 | 4.863 × 10−4 | 4.872 × 10−4 | 6.972 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Duan, W. The Effect of Hatch Spacing on the Electrochemistry and Discharge Performance of a CeO2/Al6061 Anode for an Al-Air Battery via Selective Laser Melting. Crystals 2024, 14, 797. https://doi.org/10.3390/cryst14090797
Li Y, Duan W. The Effect of Hatch Spacing on the Electrochemistry and Discharge Performance of a CeO2/Al6061 Anode for an Al-Air Battery via Selective Laser Melting. Crystals. 2024; 14(9):797. https://doi.org/10.3390/cryst14090797
Chicago/Turabian StyleLi, Yinbiao, and Weipeng Duan. 2024. "The Effect of Hatch Spacing on the Electrochemistry and Discharge Performance of a CeO2/Al6061 Anode for an Al-Air Battery via Selective Laser Melting" Crystals 14, no. 9: 797. https://doi.org/10.3390/cryst14090797
APA StyleLi, Y., & Duan, W. (2024). The Effect of Hatch Spacing on the Electrochemistry and Discharge Performance of a CeO2/Al6061 Anode for an Al-Air Battery via Selective Laser Melting. Crystals, 14(9), 797. https://doi.org/10.3390/cryst14090797