Synthesis and Characterization of Iron–Sillenite for Application as an XRD/MRI Dual-Contrast Agent
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hussain, S.; Mubeen, I.; Ullah, N.; Shahab, S.; Shah, U.D.; Khan, B.A.; Zahoor, M.; Ullah, R.; Khan, F.A.; Sultan, M.A. Modern Diagnostic Imaging Technique Applications and Risk Factors in the Medical Field: A Review. Biomed. Res. Int. 2022, 2022, 5164970. [Google Scholar] [CrossRef] [PubMed]
- Aimacana, C.M.C.; Perez, D.A.Q.; Pinto, S.R.; Debut, A.; Attia, M.F.; Santos-Oliveira, R.; Whitehead, D.C.; Terencio, T.; Alexis, F.; Dahoumane, S.A. Polytetrafluoroethylene-like Nanoparticles as a Promising Contrast Agent for Dual Modal Ultrasound and X-ray Bioimaging. ACS Biomater. Sci. Eng. 2021, 7, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Sun, Y.; Rusu, V.; Laverman, P.; Borm, P.; Heerschap, A.; Oosterwijk, E.; Boerman, O.C.; Jansen, J.A.; Walboomers, X.F. Dual contrast agent for computed tomography and magnetic resonance hard tissue imaging. Tiss. Eng. C Methods 2013, 19, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Ma, X.; Chen, R.; Ge, Z.; Xu, J.; Shen, X.; Jia, L.; Zhou, T.; Luo, Y.; Ma, T. Using fluorescently-labeled magnetic nanocomposites as a dual contrast agent for optical and magnetic resonance imaging. Biomater. Sci. 2017, 5, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Farwell, M.D.; Pryma, D.A.; Mankoff, D.A. PET/CT imaging in cancer: Current applications and future directions. Cancer 2014, 120, 3433–3445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; García-Gabilondo, M.; Grayston, A.; Feiner, I.V.J.; Anton-Sales, I.; Loiola, R.A.; Llop, J.; Ramos-Cabrer, P.; Barba, I.; Garcia-Dorado, D.; et al. PLGA protein nanocarriers with tailor-made fluorescence/MRI/PET imaging modalities. Nanoscale 2020, 12, 4988–5002. [Google Scholar] [CrossRef] [PubMed]
- Westbrook, C.; Talbot, J. MRI in Practice; Wiley: New York, NY, USA, 2018; p. 416. [Google Scholar]
- El-Hammadi, M.M.; Arias, J.L. Iron oxide-based multifunctional nanoparticulate systems for biomedical applications: A patent review (2008–present). Expert Opin. Ther. Pat. 2015, 25, 691–709. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.-C.; Teng, N.-C.; Lin, C.-K.; Lee, P.-Y.; Ji, D.-Y.; Chen, C.-C.; Ke, E.-S.; Lee, S.-Y.; Yang, J.-C. A Novel Accelerator for Improving the Handling Properties of Dental Filling Materials. J. Endod. 2009, 35, 1292–1295. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Hsieh, S.-C.; Teng, N.-C.; Kao, C.-K.; Lee, S.-Y.; Lin, C.-K.; Yang, J.-C. Radiopacity and cytotoxicity of Portland cement containing zirconia doped bismuth oxide radiopacifiers. J. Endod. 2014, 40, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Smart, L.E.; Moore, E.A. Solid State Chemistry: An Introduction, 4th ed.; Taylor & Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- Kumar, A.; Dutta, S.; Kim, S.; Kwon, T.; Patil, S.S.; Kumari, N.; Jeevanandham, S.; Lee, I.S. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem. Rev. 2022, 122, 12748–12863. [Google Scholar] [CrossRef] [PubMed]
- Sharmin, F.; Basith, M.A. Simple Low Temperature Technique to Synthesize Sillenite Bismuth Ferrite with Promising Photocatalytic Performance. ACS Omega 2022, 7, 34901–34911. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.M.; Ragavendran, V.; Mayandi, J.; Ramachandran, K.; Jayakumar, K. Influence of PVP on Bi25FeO40 microcubes for Supercapacitors and Dye-Sensitized Solar Cells applications. J. Mater. Sci. Mater. Electr. 2022, 33, 9512–9524. [Google Scholar] [CrossRef]
- Jebari, H.; Tahiri, N.; Boujnah, M.; El Bounagui, O.; Boudad, L.; Taibi, M.; Ez-Zahraouy, H. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO40. Appl. Phys. 2022, 128, 842. [Google Scholar] [CrossRef]
- Nayak, A.K.; Gopalakrishnan, T. Phase- and Crystal Structure-Controlled Synthesis of Bi2O3, Fe2O3, and BiFeO3 Nanomaterials for Energy Storage Devices. ACS Appl. Nanomater. 2022, 5, 14663–14676. [Google Scholar] [CrossRef]
- Xiong, Z.W.; Cao, L.H. Tailoring morphology, enhancing magnetization and photocatalytic activity via Cr doping in Bi25FeO40. J. Alloys Compd. 2019, 773, 828–837. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, S.H.; Liang, C.; Shen, J.M.; Chen, Y.Q.; Feng, Y.C.; Chen, H.; Liu, R.; Jiang, F. Electrocatalytic performance of Sb-modified Bi25FeO40 for nitrogen fixation. J. Colloid Interf. Sci. 2021, 593, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Juwita, E.; Sulistiani, F.A.; Darmawan, M.Y.; Istiqomah, N.I.; Suharyadi, E. Microstructural, optical, and magnetic properties and specific absorption rate of bismuth ferrite/SiO2 nanoparticles. Mater. Res. Express 2022, 9, 076101. [Google Scholar] [CrossRef]
- Wu, L.; Dong, C.H.; Chen, H.; Yao, J.L.; Jiang, C.J.; Xue, D.S. Hydrothermal Synthesis and Magnetic Properties of Bismuth Ferrites Nanocrystals with Various Morphology. J. Am. Ceram. Soc. 2012, 95, 3922–3927. [Google Scholar] [CrossRef]
- Yotburut, B.; Yamwong, T.; Thongbai, P.; Maensiri, S. Synthesis and characterization of coprecipitation-prepared La-doped BiFeO3 nanopowders and their bulk dielectric properties. Jpn. J. Appl. Phys. 2014, 53, 06JG13. [Google Scholar] [CrossRef]
- Koeferstein, R. Synthesis, phase evolution and properties of phase-pure nanocrystalline BiFeO3 prepared by a starch-based combustion method. J. Alloys Compd. 2014, 590, 324–330. [Google Scholar] [CrossRef]
- Goldman, A.R.; Fredricks, J.L.; Estroff, L.A. Exploring reaction pathways in the hydrothermal growth of phase-pure bismuth ferrites. J. Cryst. Growth 2017, 468, 104–109. [Google Scholar] [CrossRef]
- Sansom, G.; Rattanakam, R.; Jettanasen, J. Effects of Scaling Up on the Phase Evolution of Microcrystalline Bismuth Ferrite during Hydrothermal Process. E-J. Surf. Sci. Nanotechnol. 2022, 20, 85–89. [Google Scholar] [CrossRef]
- Yang, X.; Xu, G.; Ren, Z.H.; Weng, W.J.; Du, P.Y.; Shen, G.; Han, G.R. Effect of PVA Adding Amount on Phase-Controlled Synthesis and Morphology Evolution of the Bismuth Ferrite by Assisted Hydrothermal Reaction Route. Rare Met. Mater. Eng. 2012, 41, 247–249. [Google Scholar]
- Koeferstein, R.; Buttlar, T.; Ebbinghaus, S.G. Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes. J. Solid State Chem. 2014, 217, 50–56. [Google Scholar] [CrossRef]
- Ji, W.D.; Li, M.M.; Zhang, G.; Wang, P. Controlled synthesis of Bi25FeO40 with different morphologies: Growth mechanism and enhanced photo-Fenton catalytic properties. Dalton Trans. 2017, 46, 10586–10593. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.M.; Ragavendran, V.; Mayandi, J.; Ramachandran, K.; Jayakumar, K. Phase dependent electrochemical characteristics of bismuth ferrite: A bifunctional electrocatalyst for Supercapacitors and Dye-Sensitized Solar Cells. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130529. [Google Scholar] [CrossRef]
- Ren, L.; Lu, S.Y.; Fang, J.Z.; Wu, Y.; Chen, D.Z.; Huang, L.Y.; Chen, Y.F.; Cheng, C.; Liang, Y.; Fang, Z.Q. Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst. Catal. Today 2017, 281, 656–661. [Google Scholar] [CrossRef]
- Zou, W.J.; Dong, J.T.; Ji, M.X.; Wang, B.; Li, Y.J.; Yin, S.; Li, H.M.; Xia, J.X. Synthesis of Bi25FeO40 Nanoparticles with Oxygen Vacancies via Ball Milling for Fenton Oxidation of Tetracycline Hydrochloride and Reduction of Cr(VI). ACS Appl. Nano Mater. 2023, 6, 4309–4318. [Google Scholar] [CrossRef]
- Sun, A.W.; Chen, H.; Song, C.Y.; Jiang, F.; Wang, X.; Fu, Y.S. Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance. RSC Adv. 2013, 3, 4332–4340. [Google Scholar] [CrossRef]
- Li, F.H.; Zhou, J.K.; Gao, C.J.; Qiu, H.X.; Gong, Y.L.; Gao, J.H.; Liu, Y.; Gao, J.P. A green method to prepare magnetically recyclable Bi/Bi25FeO40-C nanocomposites for photocatalytic hydrogen generation. Appl. Surf. Sci. 2020, 521, 146342. [Google Scholar] [CrossRef]
- Jalil, M.A.; Chowdhury, S.S.; Sakib, M.A.; Yousuf, S.M.E.H.; Ashik, E.K.; Firoz, S.H.; Basith, M.A. Temperature-dependent phase transition and comparative investigation on enhanced magnetic and optical properties between sillenite and perovskite bismuth ferrite-rGO nanocomposites. J. Appl. Phys. 2017, 122, 084902. [Google Scholar] [CrossRef]
- Basith, M.A.; Ahsan, R.; Zarin, I.; Jalil, M.A. Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25FeO40-rGO nanocomposite and mechanism insight. Sci. Rep. 2018, 8, 11090. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, X.Y.; Zhu, G.X.; Gao, Y.; Cheng, Q.F.; Cheng, X.W. Synthesis of silver phosphate/sillenite bismuth ferrite/graphene oxide nanocomposite and its enhanced visible light photocatalytic mechanism. Separ. Purif. Technol. 2019, 215, 490–499. [Google Scholar] [CrossRef]
- de Gois, M.M.; Araujo, W.P.; da Silva, R.B.; da Luz, G.E.; Soares, J.M. Bi25FeO40-Fe3O4-Fe2O3 composites: Synthesis, structural characterization, magnetic and UV-visible photocatalytic properties. J. Alloys Compd. 2019, 785, 598–602. [Google Scholar] [CrossRef]
- Wang, G.M.; Cheng, D.; He, T.C.; Hu, Y.Y.; Deng, Q.R.; Mao, Y.W.; Wang, S.G. Enhanced visible-light responsive photocatalytic activity of Bi25FeO40/Bi2Fe4O9 composites and mechanism investigation. J. Mater. Sci. Mater. Electron. 2019, 30, 10923–10933. [Google Scholar] [CrossRef]
- Wang, Y.F.; Xu, C.X.; Yan, L.; Li, J. Synthesis of BiFeO3/Bi25FeO40 heterojunction structure and precise adjustment of forbidden band width. Mater. Chem. Phys. 2023, 305, 127935. [Google Scholar] [CrossRef]
- Xu, C.X.; Wang, Y.F.; Wang, Q.; Li, J.; Yan, L. Phase transformation and heterojunction nanostructures of bismuth iron oxide. J. Mater. Sci. Mater. Electron. 2023, 34, 2236. [Google Scholar] [CrossRef]
- Lee, E.J.; Heo, W.C.; Park, J.W.; Chang, Y.; Bae, J.-E.; Chae, K.S.; Kim, T.J.; Park, J.A.; Lee, G.H. D-Glucuronic Acid Coated Gd(IO3)3·2H2O Nanomaterial as a Potential T1 MRI-CT Dual Contrast Agent. Eur. J. Inorg. Chem. 2013, 16, 2858–2866. [Google Scholar] [CrossRef]
- Sharma, V.K.; Alipour, A.; Soran-Erdem, Z.; Aykut, Z.G.; Demir, H.V. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1-T2 MRI contrast agents. Nanoscale 2015, 7, 10519–10526. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Lee, G.T.; Kim, H.-K.; Sung, B.; Lee, Y.; Kim, M.; Chang, Y.; Seo, J.H. Surface Design of Eu-Doped Iron Oxide Nanoparticles for Tuning the Magnetic Relaxivity. ACS Appl. Mater. Interf. 2018, 10, 25080–25089. [Google Scholar] [CrossRef] [PubMed]
- Illert, P.; Waengler, B.; Waengler, C.; Zoellner, F.; Uhrig, T.; Litau, S.; Pretze, M.; Roeder, T. Functionalizable composite nanoparticles as a dual magnetic resonance imaging/computed tomography contrast agent for medical imaging. J. Appl. Polym. Sci. 2019, 136, 47571. [Google Scholar] [CrossRef]
- Eguia-Eguia, S.I.; Gildo-Ortiz, L.; Perez-Gonzalez, M.; Tomas, S.A.; Arenas-Alatorre, J.A.; Santoyo-Salazar, J. Magnetic domains orientation in (Fe3O4/γ-Fe2O3) nanoparticles coated by Gadolinium-diethylenetriaminepentaacetic acid (Gd3+-DTPA). Nano Express 2021, 2, 020019. [Google Scholar] [CrossRef]
- Kun Yang, K.; Peng, H.; Wen, Y.; Li, N. Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 2010, 256, 3093–3097. [Google Scholar] [CrossRef]
- Husain, S.; Irfansyah, M.; Haryanti, N.H.; Suryajaya, S.; Arjo, S.; Maddu, A. Synthesis and characterization of Fe3O4 magnetic nanoparticles from iron ore. J. Phys. Conf. Ser. 2019, 1242, 012021. [Google Scholar] [CrossRef]
- Li, W. Facile synthesis of monodisperse Bi2O3 nanoparticles. Mater. Chem. Phys. 2006, 99, 174–180. [Google Scholar] [CrossRef]
- Labib, S. Preparation, characterization and photocatalytic properties of doped and undoped Bi2O3. J. Saudi Chem. Soc. 2017, 21, 664–672. [Google Scholar] [CrossRef]
- Wu, X.; Wang, X.; Chen, X.; Yang, X.; Ma, Q.; Xu, G.; Yu, L.; Ding, J. Injectable and thermosensitive hydrogels mediating a universal macromolecular contrast agent with radiopacity for noninvasive imaging of deep tissues. Bioact. Mater. 2021, 6, 4717–4728. [Google Scholar] [CrossRef] [PubMed]
- Dukic, W.; Delija, B.; Derossi, D.; Dadic, I. Radiopacity of composite dental materials using a digital X-ray system. Dent. Mater. J. 2012, 31, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Hitij, T.; Fidler, A. Radiopacity of dental restorative materials. Clin. Oral Investig. 2013, 17, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Fu, N.; Li, A.; Zhang, J.; Zhang, P.; Zhang, H.; Yang, S.; Zhang, J. Liposome-camouflaged iodinated mesoporous silica nanoparticles with high loading capacity, high hemodynamic stability, high biocompatibility and high radiopacity. Int. J. Pharmaceut. 2024, 650, 123700. [Google Scholar] [CrossRef] [PubMed]
- Emonde, C.V.; Eggers, M.E.; Wichmann, M.; Hurschler, C.; Ettinger, M.; Denkena, B. Radiopacity Enhancements in Polymeric Implant Biomaterials: A Comprehensive Literature Review. ACS Biomater. Sci. Eng. 2024, 10, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
Name of Control Sample | m(BaSO4), G | m(Laponite Solution), G |
---|---|---|
A1 | 0.1 | 0.9 |
B1 | 0.2 | 0.8 |
C1 | 0.3 | 0.7 |
A2 | 0.2 | 1.8 |
B2 | 0.4 | 1.6 |
C2 | 0.6 | 1.4 |
Name of Control Sample | Grayscale Value | mm Al |
---|---|---|
A1 | 10.773 | 0.355 |
B1 | 84.596 | 3.387 |
C1 | 142.910 | 2.922 |
A2 | 53.893 | 0.681 |
B2 | 83.008 | 4.257 |
C2 | 159.511 | 5.092 |
Name of Control Sample | Investigated Samples | Background | Iron–Sillenite | ||
---|---|---|---|---|---|
Grayscale Value | mm Al | Grayscale Value | mm Al | mm Al | |
A3 | 68.406 ± 6.534 | 2.279 | 60.143 ± 6.382 | 1.920 | 0.359 |
B3 | 102.346 ± 7.559 | 3.379 | 75.137 ± 6.242 | 2.274 | 1.105 |
C3 | 100.070 ± 7.654 | 3.790 | 60.731 ± 6.652 | 1.967 | 1.823 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vistorskaja, D.; Yang, J.-C.; Wu, Y.-T.; Chang, L.-Y.; Lu, P.-W.; Zarkov, A.; Grigoraviciute, I.; Kareiva, A. Synthesis and Characterization of Iron–Sillenite for Application as an XRD/MRI Dual-Contrast Agent. Crystals 2024, 14, 706. https://doi.org/10.3390/cryst14080706
Vistorskaja D, Yang J-C, Wu Y-T, Chang L-Y, Lu P-W, Zarkov A, Grigoraviciute I, Kareiva A. Synthesis and Characterization of Iron–Sillenite for Application as an XRD/MRI Dual-Contrast Agent. Crystals. 2024; 14(8):706. https://doi.org/10.3390/cryst14080706
Chicago/Turabian StyleVistorskaja, Diana, Jen-Chang Yang, Yu-Tzu Wu, Liang-Yu Chang, Po-Wen Lu, Aleksej Zarkov, Inga Grigoraviciute, and Aivaras Kareiva. 2024. "Synthesis and Characterization of Iron–Sillenite for Application as an XRD/MRI Dual-Contrast Agent" Crystals 14, no. 8: 706. https://doi.org/10.3390/cryst14080706
APA StyleVistorskaja, D., Yang, J.-C., Wu, Y.-T., Chang, L.-Y., Lu, P.-W., Zarkov, A., Grigoraviciute, I., & Kareiva, A. (2024). Synthesis and Characterization of Iron–Sillenite for Application as an XRD/MRI Dual-Contrast Agent. Crystals, 14(8), 706. https://doi.org/10.3390/cryst14080706