Enhancing Photovoltaic Performance with BaTiO3/MWCNTs Composite Photoelectrodes in Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. BaTiO3 Synthesis
2.3. BaTiO3/MWCNT Synthesis
2.4. Solar Cell Fabrication
2.5. Characterization of the Samples
2.6. Photovoltaic Performance of DSSCs
3. Results
3.1. Thermal Analysis
3.2. X-ray Diffraction Results
3.3. Raman Spectroscopy
3.4. FTIR Spectroscopy
3.5. UV–Vis Spectroscopy
3.6. Photoluminescence Spectroscopy
3.7. Scanning Electron Microscopy
3.8. Solar Cell Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 8 December 2023).
- Mason, L.R.; Melton, C.C.; Gray, D.; Swallow, A.L. Climate Change, Social Work, and the Transition Away from Fossil Fuels: A Scoping Review. Sustainability 2022, 14, 7086. [Google Scholar] [CrossRef]
- Stepanov, I.A.; Makarov, I.A. Greenhouse gas emissions regulation in fossil fuels exporting countries: Opportunities and challenges for Russia. Post-Communist Econ. 2022, 34, 916–943. [Google Scholar] [CrossRef]
- Perera, F.; Nadeau, K. Climate Change, Fossil-Fuel Pollution, and Children’s Health. N. Engl. J. Med. 2022, 386, 2303–2314. [Google Scholar] [CrossRef] [PubMed]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. Int. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.H.; Ghazvini, M.; Alhuyi Nazari, M.; Ahmadi, M.A.; Pourfayaz, F.; Lorenzini, G.; Ming, T. Renewable energy harvesting with the application of nanotechnology: A review. Int. J. Energy Res. 2019, 43, 1387–1410. [Google Scholar] [CrossRef]
- Handayani, K.; Krozer, Y.; Filatova, T. From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning. Energy Policy 2019, 127, 134–146. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Aljibory, M.W.; Hashim, H.T.; Abbas, W.N. A Review of Solar Energy Harvesting Utilising a Photovoltaic–Thermoelectric Integrated Hybrid System. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1067, 12115. [Google Scholar] [CrossRef]
- Hao, D.; Qi, L.; Tairab, A.M.; Ahmed, A.; Azam, A.; Luo, D.; Pan, Y.; Zhang, Z.; Yan, J. Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renew. Energy 2022, 188, 678–697. [Google Scholar] [CrossRef]
- Lau, D.; Song, N.; Hall, C.; Jiang, Y.; Lim, S.; Perez-Wurfl, I.; Ouyang, Z.; Lennon, A. Hybrid solar energy harvesting and storage devices: The promises and challenges. Mater. Today Energy 2019, 13, 22–44. [Google Scholar] [CrossRef]
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sustain. Energy Rev. 2017, 68, 234–246. [Google Scholar] [CrossRef]
- Luo, X.; Wu, T.; Wang, Y.; Lin, X.; Su, H.; Han, Q.; Han, L. Progress of all-perovskite tandem solar cells: The role of narrow-bandgap absorbers. Sci. China Chem. 2021, 64, 218–227. [Google Scholar] [CrossRef]
- Zatirostami, A. SnO2− based DSSC with SnSe counter electrode prepared by sputtering and selenization of Sn: Effect of selenization temperature. Mater. Sci. Semicond. Process. 2021, 135, 106044. [Google Scholar] [CrossRef]
- Abdulah, H.I.; Rheima, A.M.; Hussain, D.H.; Abed, H.J. of Fe2O3Nanoparticles by Photolysis Method for Novel Dye-sensitized Solar Cell. J. Adv. Sci. Nanotechnol. 2022, 1, 1–8. [Google Scholar] [CrossRef]
- Ursu, D.; Vajda, M.; Miclau, M. Investigation of the p-type dye-sensitized solar cell based on full Cu2O electrodes. J. Alloys Compd. 2019, 802, 86–92. [Google Scholar] [CrossRef]
- Tiburcio, J.; Sacari, E.; Chacaltana, J.; Medina, J.; Gamarra, F.; Polo, C.; Mamani, E.; Quispe, A. Influence of Cr Doping on Structural, Optical, and Photovoltaic Properties of BiFeO3 Synthesized by Sol-Gel Method. Energies 2023, 16, 786. [Google Scholar] [CrossRef]
- Lilge, T.S.; Ramires das Neves Stigger, A.; Fernandes, C.D.; Gularte, L.T.; Raubach, C.W.; Da Silva Cava, S.; Gomes Jardim, P.L.; Giroldo Valerio, M.E.; Moreira, M.L. Increase of Voc using heterojunctions of BaTiO3 without sensitization. Ceram. Int. 2020, 46, 4907–4913. [Google Scholar] [CrossRef]
- Bhojanaa, K.B.; Soundarya Mary, A.; Shalini Devi, K.S.; Pavithra, N.; Pandikumar, A. Account of Structural, Theoretical, and Photovoltaic Properties of ABO3 Oxide Perovskites Photoanode-Based Dye-Sensitized Solar Cells. Sol. RRL 2022, 6, 2100792. [Google Scholar] [CrossRef]
- Cui, Y.; Briscoe, J.; Dunn, S. Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3—Influence on the Carrier Separation and Stern Layer Formation. Chem. Mater. 2013, 25, 4215–4223. [Google Scholar] [CrossRef]
- Zhong, M.; Shi, J.; Zhang, W.; Han, H.; Li, C. Charge recombination reduction in dye-sensitized solar cells by depositing ultrapure TiO2 nanoparticles on “inert” BaTiO3 films. Mater. Sci. Eng. B 2011, 176, 1115–1122. [Google Scholar] [CrossRef]
- Clabel, H.J.L.; Rivera, V.; Nogueira, I.C.; Leite, E.R.; Pereira-da-Silva, M.A.; Li, M.S.; Marega, E. Effects of defects, grain size, and thickness on the optical properties of BaTiO3 thin films. J. Lumin. 2017, 192, 969–974. [Google Scholar] [CrossRef]
- Thomas, R.; Dube, D.C.; Kamalasanan, M.N.; Chandra, S. Optical and electrical properties of BaTiO3 thin films prepared by chemical solution deposition. Thin Solid. Film. 1999, 346, 212–225. [Google Scholar] [CrossRef]
- Ramakanth, S.; James Raju, K.C. Band gap narrowing in BaTiO3 nanoparticles facilitated by multiple mechanisms. J. Appl. Phys. 2014, 115, 173507. [Google Scholar] [CrossRef]
- Yang, F.; Yang, L.; Ai, C.; Xie, P.; Lin, S.; Wang, C.-Z.; Lu, X. Tailoring Bandgap of Perovskite BaTiO3 by Transition Metals Co-Doping for Visible-Light Photoelectrical Applications: A First-Principles Study. Nanomaterial 2018, 8, 455. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-T.; Lu, F.-H. Corrosion resistance of BaTiO3 films prepared by plasma electrolytic oxidation. Surf. Coat. Technol. 2003, 166, 31–36. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Cao, X.; Wu, S.; Liu, C.; Li, G.; Jiang, W.; Wang, H.; Wang, N.; Ding, W. Preparation and characterization of TiO2 nanoparticles by two different precipitation methods. Ceram. Int. 2020, 46, 15333–15341. [Google Scholar] [CrossRef]
- Gupta, T.; Samriti, C.J.; Prakash, J. Hydrothermal synthesis of TiO2 nanorods: Formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities. Mater. Today Chem. 2021, 20, 100428. [Google Scholar] [CrossRef]
- Gamarra, F.; Medina, J.; Lanchipa, W.; Tamayo, R.; Sacari, E. Structural, Optical, and Arsenic Removal Properties of Sol-Gel Synthesized Fe-Doped TiO2 Nanoparticles. Nanomaterial 2022, 12, 3402. [Google Scholar] [CrossRef]
- Shakeel Ahmad, M.; Pandey, A.K.; Abd Rahim, N. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew. Sustain. Energy Rev. 2017, 77, 89–108. [Google Scholar] [CrossRef]
- Mujtahid, F.; Gareso, P.L.; Armynah, B.; Tahir, D. Review effect of various types of dyes and structures in supporting performance of dye-sensitized solar cell TiO2-based nanocomposites. Int. J. Energy Res. 2022, 46, 726–742. [Google Scholar] [CrossRef]
- Jun, H.K.; Careem, M.A.; Arof, A.K. Quantum dot-sensitized solar cells—Perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers. Renew. Sustain. Energy Rev. 2013, 22, 148–167. [Google Scholar] [CrossRef]
- Kouhnavard, M.; Ikeda, S.; Ludin, N.A.; Ahmad Khairudin, N.B.; Ghaffari, B.V.; Mat-Teridi, M.A.; Ibrahim, M.A.; Sepeai, S.; Sopian, K. A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew. Sustain. Energy Rev. 2014, 37, 397–407. [Google Scholar] [CrossRef]
- Brennan, L.J.; Byrne, M.T.; Bari, M.; Gun’ko, Y.K. Carbon Nanomaterials for Dye-Sensitized Solar Cell Applications: A Bright Future. Adv. Energy Mater. 2011, 1, 472–485. [Google Scholar] [CrossRef]
- Batmunkh, M.; Biggs, M.J.; Shapter, J.G. Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes. Adv. Sci. 2015, 2, 1400025. [Google Scholar] [CrossRef] [PubMed]
- Batmunkh, M.; Biggs, M.J.; Shapter, J.G. Carbon Nanotubes for Dye-Sensitized Solar Cells. Small 2015, 11, 2963–2989. [Google Scholar] [CrossRef] [PubMed]
- Sugathan, V.; John, E.; Sudhakar, K. Recent improvements in dye sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2015, 52, 54–64. [Google Scholar] [CrossRef]
- Najm, A.S.; Alwash, S.A.; Sulaiman, N.H.; Chowdhury, M.S.; Techato, K. N719 dye as a sensitizer for dye-sensitized solar cells (DSSCs): A review of its functions and certain rudimentary principles. Env. Prog. Sustain. Energy 2023, 42, e13955. [Google Scholar] [CrossRef]
- Uk Lee, S.; Seok Choi, W.; Hong, B. A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes. Sol. Energy Mater. Sol. Cells 2010, 94, 680–685. [Google Scholar] [CrossRef]
- Mehmood, U.; Hussein, I.A.; Harrabi, K.; Mekki, M.B.; Ahmed, S.; Tabet, N. Hybrid TiO2–multiwall carbon nanotube (MWCNTs) photoanodes for efficient dye sensitized solar cells (DSSCs). Sol. Energy Mater. Sol. Cells 2015, 140, 174–179. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yao, D.S.; Song, C.B.; Zhu, L.; Song, J.; Gu, X.Q.; Qiang, Y.H. CNT–G–TiO2 layer as a bridge linking TiO2 nanotube arrays and substrates for efficient dye-sensitized solar cells. RSC Adv. 2015, 5, 43805–43809. [Google Scholar] [CrossRef]
- Anjidani, M.; Milani Moghaddam, H.; Ojani, R. Binder-free MWCNT/TiO2 multilayer nanocomposite as an efficient thin interfacial layer for photoanode of dye sensitized solar cell. Mater. Sci. Semicond. Process. 2017, 71, 20–28. [Google Scholar] [CrossRef]
- Thanki, A.A.; Goyal, R.K. Study on effect of cubic- and tetragonal phased BaTiO3 on the electrical and thermal properties of polymeric nanocomposites. Mater. Chem. Phys. 2016, 183, 447–456. [Google Scholar] [CrossRef]
- Saravanan, A.; Prasad, K.; Gokulakrishnan, N.; Kalaivani, R.; Somanathan, T. Efficiency of Transition Metals in Combustion Catalyst for High Yield Helical Multi-Walled Carbon Nanotubes. Adv. Sci. Eng. Med. 2014, 6, 809–813. [Google Scholar] [CrossRef]
- Nie, P.; Min, C.; Song, H.-J.; Chen, X.; Zhang, Z.; Zhao, K. Preparation and Tribological Properties of Polyimide/Carboxyl-Functionalized Multi-walled Carbon Nanotube Nanocomposite Films Under Seawater Lubrication. Tribol. Lett. 2015, 58, 7. [Google Scholar] [CrossRef]
- Hayashi, H.; Nakamura, T.; Ebina, T. In-situ Raman spectroscopy of BaTiO3 particles for tetragonal–cubic transformation. J. Phys. Chem. Solids 2013, 74, 957–962. [Google Scholar] [CrossRef]
- Pitiphattharabun, S.; Sato, N.; Panomsuwan, G.; Jongprateep, O. Electrocatalytic Properties of a BaTiO3/MWCNT Composite for Citric Acid Detection. Catalysts 2022, 12, 49. [Google Scholar] [CrossRef]
- Dang, N.V.; Thanh, T.D.; Hong, L.V.; Lam, V.D.; Phan, T.-L. Structural, optical and magnetic properties of polycrystalline BaTi1−xFexO3 ceramics. J. Appl. Phys. 2011, 110, 43914. [Google Scholar] [CrossRef]
- Kholodkova, A.A.; Danchevskaya, M.N.; Ivakin, Y.D.; Muravieva, G.P.; Tyablikov, A.S. Crystalline barium titanate synthesized in sub- and supercritical water. J. Supercrit. Fluids 2016, 117, 194–202. [Google Scholar] [CrossRef]
- Colson, T.A.; Spencer, M.J.; Yarovsky, I. A DFT study of the perovskite and hexagonal phases of BaTiO3. Comput. Mater. Sci. 2005, 34, 157–165. [Google Scholar] [CrossRef]
- Buixaderas, E.; Kamba, S.; Petzelt, J.; Wada, M.; Yamanaka, A.; Inoue, K. Study of Phase Transitions in Hexagonal BaTiO3 by means of Far-infrared Spectroscopy. J.-Korean Phys. Soc. 1998, 32, S578–S580. [Google Scholar]
- Gajović, A.; Pleština, J.V.; Žagar, K.; Plodinec, M.; Šturm, S.; Čeh, M. Temperature-dependent Raman spectroscopy of BaTiO3 nanorods synthesized by using a template-assisted sol-gel procedure. J. Raman Spectrosc. 2013, 44, 412–420. [Google Scholar] [CrossRef]
- Aoyagi, S.; Kuroiwa, Y.; Sawada, A.; Kawaji, H.; Atake, T. Size effect on crystal structure and chemical bonding nature in BaTiO3 nanopowder. J. Therm. Anal. Calorim. 2005, 81, 627–630. [Google Scholar] [CrossRef]
- Hoshina, T. Size effect of barium titanate: Fine particles and ceramics. J. Ceram. Soc. Jpn. 2013, 121, 156–161. [Google Scholar] [CrossRef]
- Frey, M.H.; Payne, D.A. Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B Condens. Matter 1996, 54, 3158–3168. [Google Scholar] [CrossRef]
- Kappadan, S.; Gebreab, T.W.; Thomas, S.; Kalarikkal, N. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process. 2016, 51, 42–47. [Google Scholar] [CrossRef]
- Sreedhar, B.; Satya Vani, C.; Keerthi Devi, D.; VBasaveswara Rao, M.; Rambabu, C. Shape Controlled Synthesis of Barium Carbonate Microclusters and Nanocrystallites using Natural Polysachharide—Gum Acacia. Materials 2012, 2, 5–13. [Google Scholar] [CrossRef]
- Singh, M.; Yadav, B.C.; Ranjan, A.; Kaur, M.; Gupta, S.K. Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sens. Actuators B Chem. 2017, 241, 1170–1178. [Google Scholar] [CrossRef]
- Khan, T.M.; Zakria, M.; Shakoor, R.I.; Hussain, S. Composite-hydroxide-mediated approach an effective synthesis route for BaTiO3 functional nanomaterials. Appl. Phys. A 2016, 122, 274. [Google Scholar] [CrossRef]
- Mahmoudian, M.; Khazani, Y.; Gozali Balkanloo, P.; Enayati, M. Poly(diallyldimethylammonium chloride)-grafted carboxylated-MWCNT as an additive in the polyethersulfone membrane. Polym. Bull. 2021, 78, 4313–4332. [Google Scholar] [CrossRef]
- Changshi, L.; Feng, L. Natural path for more precise determination of band gap by optical spectra. Opt. Commun. 2012, 285, 2868–2873. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgi, N.; Aversa, L.; Tatti, R.; Verucchi, R.; Sanson, A. Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Opt. Mater. 2017, 64, 18–25. [Google Scholar] [CrossRef]
- Leguy, A.M.A.; Azarhoosh, P.; Alonso, M.I.; Campoy-Quiles, M.; Weber, O.J.; Yao, J.; Bryant, D.; Weller, M.T.; Nelson, J.; Walsh, A.; et al. Experimental and theoretical optical properties of methylammonium lead halide perovskites. Nanoscale 2016, 8, 6317–6327. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-J.; Zhang, R.-J.; Zheng, H.; Li, D.-H.; Wei, W.; Chen, X.; Sun, Y.; Wei, Y.-F.; Lu, H.-L.; Dai, N.; et al. Optical Constants and Band Gap Evolution with Phase Transition in Sub-20-nm-Thick TiO2 Films Prepared by ALD. Nanoscale Res. Lett. 2017, 12, 243. [Google Scholar] [CrossRef] [PubMed]
- El-Hagary, M.; Shaaban, E.R.; Moustafa, S.H.; Gad, G. The particle size-dependent optical band gap and magnetic properties of Fe-doped CeO2 nanoparticles. Solid State Sci. 2019, 91, 15–22. [Google Scholar] [CrossRef]
- Madhan, K.; Murugaraj, R. Structural and electron paramagnetic resonance of Fe3+ Sm3+ co-doped BaTiO3. In Proceedings of the DAE Solid State Physics Symposium 2019, Jodhpur, India, 18–22 December 2019; AIP Publishing: Melville, NY, USA, 2020; p. 30495. [Google Scholar]
- Rastogi, M.; Kushwaha, H.S.; Vaish, R. Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets. Electron. Mater. Lett. 2016, 12, 281–289. [Google Scholar] [CrossRef]
- Nawanil, C.; Panprom, P.; Khaosa Ard, K.; Makcharoen, W.; Vittayakorn, N. Effect of surface treatment on electrical properties of barium titanate/carbon nanotube/polydimethylsiloxane nanocomposites. AIP Conf. Proc. 2018, 2010, 20029. [Google Scholar]
- Clabel, H.J.L.; Nicolodelli, G.; Lozano, C.G.; Rivera, V.A.G.; Ferreira, S.O.; Pinto, A.H.; Li, M.S.; Marega, E. The extrinsic nature of double broadband photoluminescence from the BaTiO3 perovskite: Generation of white light emitters. Phys. Chem. Chem. Phys. 2021, 23, 18694–18706. [Google Scholar] [CrossRef]
- Woong Lee, K.; Siva Kumar, K.; Heo, G.; Seong, M.-J.; Yoon, J.-W. Characterization of hollow BaTiO3 nanofibers and intense visible photoluminescence. J. Appl. Phys. 2013, 114, 134303. [Google Scholar] [CrossRef]
- Jiang, L.-C.; Zhang, W.-D. Charge transfer properties and photoelectrocatalytic activity of TiO2/MWCNT hybrid. Electrochim. Acta 2010, 56, 406–411. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Lee, J.Y.; Bajaj, H.C.; Jo, W.-K.; Tayade, R.J. Synthesis of multiwall carbon nanotubes/TiO2 nanotube composites with enhanced photocatalytic decomposition efficiency. Catal. Today 2017, 282, 13–23. [Google Scholar] [CrossRef]
- Ni, Q.-Q.; Zhu, Y.-F.; Yu, L.-J.; Fu, Y.-Q. One-dimensional carbon nanotube@ barium titanate@ polyaniline multiheterostructures for microwave absorbing application. Nanoscale Res. Lett. 2015, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, U.; Ishfaq, A.; Sufyan, M. Nanocomposites of Multi-walled Carbon Nanotubes and Titanium dioxide (MWCNTs/TiO2) as affective counter electrode materials for Platinum-free Dye-Sensitized Solar Cells (DSSCs). Sol. Energy 2021, 220, 949–952. [Google Scholar] [CrossRef]
- Song, C.B.; Qiang, Y.H.; Zhao, Y.L.; Gu, X.Q.; Song, D.M.; Zhu, L. Adhesion of TiO2 nanotube arrays on transparent conducting substrates using CNT–TiO2 composite pastes. Appl. Surf. Sci. 2014, 305, 792–796. [Google Scholar] [CrossRef]
- Hu, J.; Xie, Y.; Bai, T.; Zhang, C.; Wang, J. A novel triple-layer zinc oxide/carbon nanotube architecture for dye-sensitized solar cells with excellent power conversion efficiency. J. Power Sources 2015, 286, 175–181. [Google Scholar] [CrossRef]
- Wei, Y.; Du, H.; Kong, J.; Lu, X.; Ke, L.; Sun, X.W. Multi-walled Carbon Nanotubes Modified ZnO Nanorods: A Photoanode for Photoelectrochemical Cell. Electrochim. Acta 2014, 143, 188–195. [Google Scholar] [CrossRef]
- Yue, G.; Wu, W.; Liu, X.; Zheng, H. Enhanced photovoltaic performance of dye-sensitized solar cells based on a promising hybrid counter electrode of CoSe2/MWCNTs. Sol. Energy 2018, 167, 137–146. [Google Scholar] [CrossRef]
- Kiran, S.; Naveen Kumar, S.K.; Yogananda, K.C.; Rangappa, D. Optimization of TiO2/MWCNT composites for efficient dye sensitized solar cells. J. Mater. Sci. Mater. Electron. 2018, 29, 12681–12689. [Google Scholar] [CrossRef]
- Sadikin, S.N.; Rahman, M.Y.; Umar, A.A. TiO2-BaTiO3 Composite Films as Photoanode for Dye Sensitized Solar Cell: Effect of BaTiO3 Content//TiO2-BaTiO3 Composite Films as Photoanode for Dye Sensitized Solar Cell: Effect of BaTiO3 Content. J. New Mater. Electrochem. Syst. 2017, 20, 109–113. [Google Scholar] [CrossRef]
- Rajamanickam, N.; Jayakumar, K.; Ramachandran, K. Influence of Mn ion on flower shaped perovskite BaTiO3 nanostructures based dye-sensitized solar cell. Nano-Struct. Nano-Objects 2017, 9, 19–25. [Google Scholar] [CrossRef]
- Sharma, S.; Tomar, M.; Puri, N.K.; Gupta, V. BiFeO3 /BaTiO3 Multilayer Structures for Solar Energy Harvesting Application. Energy Harvest. Syst. 2016, 3, 237–243. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.; Zhang, W.; Yang, S. Effects of solvents on the band energetics of nanostructured BaTiO3 electrodes for dye sensitised solar cells. Int. J. Nanomanuf. 2016, 12, 216. [Google Scholar] [CrossRef]
- Van-Pham, D.-T.; Phat, V.V.; Hoa, N.T.Q.; Ngoc, N.H.; Thao Ngan, D.T.; Don, T.N.; Mai, N.T.N.; Quyen, T.T.B.; van Thien, D.H. Fabrication of electrospun BaTiO3/chitosan/PVA nanofibers and application for dye-sensitized solar cells. IOP Conf. Ser. Earth Environ. Sci. 2021, 947, 12017. [Google Scholar] [CrossRef]
- Peter, I.J.; Vignesh, G.; Vijaya, S.; Anandan, S.; Ramachandran, K.; Nithiananthi, P. Enhancing the power conversion efficiency of SrTiO3/CdS/Bi2S3quantum dot based solar cell using phosphor. Appl. Surf. Sci. 2019, 494, 551–560. [Google Scholar] [CrossRef]
- Aravinthkumar, K.; Praveen, E.; Jacquline Regina Mary, A.; Raja Mohan, C. Investigation on SrTiO3 nanoparticles as a photocatalyst for enhanced photocatalytic activity and photovoltaic applications. Inorg. Chem. Commun. 2022, 140, 109451. [Google Scholar] [CrossRef]
- Okamoto, Y.; Suzuki, Y. Perovskite-type SrTiO3, CaTiO3 and BaTiO3 porous film electrodes for dye-sensitized solar cells. J. Ceram. Soc. Jpn. 2014, 122, 728–731. [Google Scholar] [CrossRef]
Structural Parameter | Sample | |||
---|---|---|---|---|
BaTiO3 | BaTiO3-3% MWCNT | BaTiO3-6% MWCNT | BaTiO3-10% MWCNT | |
Crystal system | Tetragonal | Tetragonal | Tetragonal | Tetragonal |
Crystal structure | P4/mmm | P4/mmm | P4/mmm | P4/mmm |
a = b (nm) | 4.0134 | 4.0034 | 4.0014 | 4.0024 |
c (nm) | 3.9988 | 4.0214 | 4.0197 | 4.0204 |
α = β = γ (°) | 90 | 90 | 90 | 90 |
ρ (g/cm3) | 5.76 | 5.56 | 5.59 | 5.56 |
D (nm) | 83.27 | 57.71 | 73.1 | 78.26 |
Rexp (%) | 6.6046 | 6.7825 | 6.0865 | 5.9684 |
Rp (%) | 5.1818 | 5.2599 | 5.0969 | 5.1128 |
Rwp (%) | 8.1624 | 7.3866 | 7.7366 | 7.7661 |
GOF | 1.23 | 1.09 | 1.27 | 1.30 |
Eg (eV) | 3.023 | 3.032 | 3.029 | 2.997 |
Element | Sample | |||
---|---|---|---|---|
BaTiO3 | BaTiO3- | BaTiO3- | BaTiO3- | |
3% MWCNT | 6% MWCNT | 10% MWCNT | ||
Ba (Atom %) | 16.73 | 15.30 | 13.68 | 10.93 |
Ti (Atom %) | 18.46 | 15.77 | 15.07 | 10.07 |
O (Atom %) | 64.74 | 64.73 | 64.50 | 67.73 |
C (Atom %) | 0.07 | 4.20 | 6.75 | 11.27 |
Total | 100 | 100 | 100 | 100 |
Sample | VOC (V) | JSC (A/cm2) | FF | Efficiency (%) | Incident Light | Reference |
---|---|---|---|---|---|---|
BaTiO3 | 0.589 | 2.98 × 10−3 | 0.395 | 0.693 | 100 mW/cm2 AM1.5G | This Work |
BaTiO3-3%MWCNT | 0.629 | 7.87 × 10−3 | 0.488 | 2.412 | 100 mW/cm2 AM1.5G | This Work |
BaTiO3-6%MWCNT | 0.773 | 8.92 × 10−3 | 0.586 | 4.044 | 100 mW/cm2 AM1.5G | This Work |
BaTiO3-10%MWCNT | 0.779 | 8.63 × 10−3 | 0.479 | 3.277 | 100 mW/cm2 AM1.5G | This Work |
TiO2/BaTiO3 | 0.550 | 0.98 × 10−3 | 0.340 | 0.18 | 100 mW/cm2 | [82] |
TiO2/BaTiO3 | 0.524 | 50.6 × 10−6 | 0.430 | 100 mW/cm2 AM1.5G | [19] | |
TiO2/BaTi1─0.05Mn0.05O3 | 0.717 | 0.87 × 10−3 | 0.390 | 0.245 | 100 mW/cm2 AM1.5G | [83] |
BiFeO3/BaTiO3 | 1.806 | 17.7 × 10−6 | 0.053 | 405 nm Laser | [84] | |
BaTiO3 | 0.58 | 4.7 × 10−4 | [85] | |||
BaTiO3/CS/PVA film | 0.38 | 1.42 × 10−3 | 0.650 | 0.36 | [86] | |
SrTiO3 | 0.29 | 3.6 × 10−4 | 0.240 | 0.033 | 85 mW/cm2 AM1.5G | [87] |
SrTiO3 | 0.44 | 1.74 × 10−3 | 0.274 | 0.21 | 100 mW/cm2 AM1.5G | [88] |
BaTiO3 | 0.65 | 1.27 × 10−4 | 0.433 | 0.0359 | 100 mW/cm2 AM1.5G | [89] |
ZnCNT-0.5-0.05% | 0.67 | 12.82 × 10−3 | 0.630 | 5.39 | 100 mW/cm2 AM1.5G | [78] |
ZnO/MWCNT | −0.197 | 0.250 × 10−3 | 0.157 | 0.646 | 100 mW/cm2 AM1.5G | [79] |
CoSe2/MWCNTs-3 | 0.75 | 16.61 × 10−3 | 0.700 | 8.72 | 100 mW/cm2 AM1.5G | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polo Bravo, C.A.; Caceres Osnayo, B.Y.; Chacaltana García, J.A.; Medina Salas, J.P.; Gamarra Gómez, F.; Torres Muro, H.A.; Quispe Cohaila, A.B.; Mangalaraja, R.V.; Sacari Sacari, E.J. Enhancing Photovoltaic Performance with BaTiO3/MWCNTs Composite Photoelectrodes in Dye-Sensitized Solar Cells. Crystals 2024, 14, 489. https://doi.org/10.3390/cryst14060489
Polo Bravo CA, Caceres Osnayo BY, Chacaltana García JA, Medina Salas JP, Gamarra Gómez F, Torres Muro HA, Quispe Cohaila AB, Mangalaraja RV, Sacari Sacari EJ. Enhancing Photovoltaic Performance with BaTiO3/MWCNTs Composite Photoelectrodes in Dye-Sensitized Solar Cells. Crystals. 2024; 14(6):489. https://doi.org/10.3390/cryst14060489
Chicago/Turabian StylePolo Bravo, Carlos Armando, Brayan Yeraldyn Caceres Osnayo, Jesús Alfredo Chacaltana García, Jesús Plácido Medina Salas, Francisco Gamarra Gómez, Hugo Alfredo Torres Muro, Alberto Bacilio Quispe Cohaila, Ramalinga Viswanathan Mangalaraja, and Elisban Juani Sacari Sacari. 2024. "Enhancing Photovoltaic Performance with BaTiO3/MWCNTs Composite Photoelectrodes in Dye-Sensitized Solar Cells" Crystals 14, no. 6: 489. https://doi.org/10.3390/cryst14060489
APA StylePolo Bravo, C. A., Caceres Osnayo, B. Y., Chacaltana García, J. A., Medina Salas, J. P., Gamarra Gómez, F., Torres Muro, H. A., Quispe Cohaila, A. B., Mangalaraja, R. V., & Sacari Sacari, E. J. (2024). Enhancing Photovoltaic Performance with BaTiO3/MWCNTs Composite Photoelectrodes in Dye-Sensitized Solar Cells. Crystals, 14(6), 489. https://doi.org/10.3390/cryst14060489