Surface Enhancement of Titanium-Based Coatings on Commercial Hard Steel Cutting Tools
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fox-Rabinovich, G.S.; Kovalev, A.I.; Afanasyev, S.N. Characteristic features of wear in tools made of high-speed steels with surface engineered coatings II: Study of surface engineered high-speed steel cutting tools by AES, SIMS and EELFAS methods. Wear 1996, 198, 280–286. [Google Scholar] [CrossRef]
- Navarro-Devia, J.H.; Amaya, C.; Caicedo, J.C.; Aperador, W. Performance evaluation of HSS cutting tool coated with hafnium and vanadium nitride multilayers, by temperature measurement and surface inspection, on machining AISI 1020 steel. Surf. Coat. Technol. 2017, 332, 484–493. [Google Scholar] [CrossRef]
- Bobzin, K. High-performance coatings for cutting tools. CIRP J. Manuf. Sci. Technol. 2017, 18, 1–9. [Google Scholar] [CrossRef]
- Navarro-Devia, J.H.; Amaya, C.; Caicedo, J.C.; Martínez, J.H.; Aperador, W. Hafnium and vanadium nitride multilayer coatings [HfN/VN]n deposited onto HSS cutting tools for dry turning of a low carbon steel: A tribological compatibility case study. Int. J. Adv. Manuf. Technol. 2019, 101, 2065–2081. [Google Scholar] [CrossRef]
- Uddin, G.M.; Joyia, F.M.; Ghufran, M.; Khan, S.A.; Raza, M.A.; Faisal, M.; Arafat, S.M.; Zubair, S.W.H.; Jawad, M.; Zafar, M.Q.; et al. Comparative performance analysis of cemented carbide, TiN, TiAlN, and PCD coated inserts in dry machining of Al 2024 alloy. Int. J. Adv. Manuf. Technol. 2021, 112, 1461–1481. [Google Scholar] [CrossRef]
- Ortíz, J.; Caicedo, J.; Navarro-Devia, J.; Martinez, J.; Aperador, W. HfN Coating of ASSAB 17 Steel by PVD Method and its Effects on 6063-T5 Aluminum Alloy Turning. Tribol. Ind. 2020, 42, 679–691. [Google Scholar] [CrossRef]
- Ghantasala, S.B.; Sharma, S. Magnetron Sputtered Thin Films Based on Transition Metal Nitride: Structure and Properties. Phys. Status Solidi (a) 2023, 220, 2200229. [Google Scholar] [CrossRef]
- Santecchia, E.; Hamouda, A.M.S.; Musharavati, F.; Zalnezhad, E.; Cabibbo, M.; Spigarelli, S. Wear resistance investigation of titanium nitride-based coatings. Ceram. Int. 2015, 41, 10349–10379. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, W.; Li, B.; Wang, C.; Kuang, T.; Li, Y. Physical vapor deposition technology for coated cutting tools: A review. Ceram. Int. 2020, 46, 18373–18390. [Google Scholar] [CrossRef]
- Lungu, M.V. An Insight into TiN, TiAlN and AlTiN Hard Coatings for Cutting Tools. Mat. Sci. Res. India 2020, 17, 87–89. [Google Scholar] [CrossRef]
- Dabees, S.; Mirzaei, S.; Kaspar, P.; Holcman, V.; Sobola, D. Characterization and Evaluation of Engineered Coating Techniques for Different Cutting Tools—Review. Materials 2022, 15, 5633. [Google Scholar] [CrossRef] [PubMed]
- Lengauer, W. Transition Metal Carbides, Nitrides, and Carbonitrides. In Handbook of Ceramic Hard Materials; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; pp. 202–252. ISBN 9780323157223. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Lin, Y.-T.; Chan, A.; Chang, J.-T. High Temperature Wear Behavior of Titanium Nitride Coating Deposited Using High Power Impulse Magnetron Sputtering. Coatings 2019, 9, 555. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Weng, S.-Y.; Chen, C.-H.; Fu, F.-X. High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings. Surf. Coat. Technol. 2017, 332, 494–503. [Google Scholar] [CrossRef]
- Faley, M.I.; Liu, Y.; Dunin-Borkowski, R.E. Titanium Nitride as a New Prospective Material for NanoSQUIDs and Superconducting Nanobridge Electronics. Nanomaterials 2021, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- Stone, D.S.; Yoder, K.B.; Sproul, W.D. Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. J. Vac. Sci. Technol. A Vac. Surf. Films 1991, 9, 2543–2547. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, W. TiN coating of tool steels: A review. J. Mater. Process. Technol. 1993, 39, 165–177. [Google Scholar] [CrossRef]
- Posti, E.; Nieminen, I. Influence of coating thickness on the life of TiN-coated high speed steel cutting tools. Wear 1989, 129, 273–283. [Google Scholar] [CrossRef]
- Harris, S.G.; Doyle, E.D.; Vlasveld, A.C.; Audy, J.; Quick, D. A study of the wear mechanisms of Ti1-xAlxN and Ti1-x-yAlxCryN coated high-speed steel twist drills under dry machining conditions. Wear 2003, 254, 723–734. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Levashov, E.A.; Sheveiko, A.N.; Moore, J.J. The Structure and Properties of Ti-B-N, Ti-Si-B-N, Ti-Si-C-N, and Ti-Al-C-N Coatings Deposited by Magnetron Sputtering Using Composite Targets Produced by Self-Propagating High-Temperature Synthesis (SHS). J. Mater. Synth. Process. 1998, 6, 61–72. [Google Scholar] [CrossRef]
- Steinmann, P.A.; Hintermann, H.E. Adhesion of TiC and Ti(C,N) coatings on steel. J. Vac. Sci. Technol. A Vac. Surf. Films 1985, 3, 2394–2400. [Google Scholar] [CrossRef]
- Ronkainen, H.; Nieminen, I.; Holmberg, K.; Leyland, A.; Matthews, A.; Matthes, B.; Broszeit, E. Evaluation of some titanium-based ceramic coatings on high speed steel cutting tools. Surf. Coat. Technol. 1991, 49, 468–473. [Google Scholar] [CrossRef]
- Ezugwu, E.O.; Wang, Z.M. Titanium alloys and their machinability—A review. J. Mater. Process. Technol. 1997, 68, 262–274. [Google Scholar] [CrossRef]
- Jehn, H.A.; Hofmann, S.; Münz, W.D. Surface and interface characterization of heat- treated (Ti, Al)N coatings on high speed steel substrates. Thin Solid Films 1987, 153, 45–53. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Wang, B.; Hu, J.; Wan, Y. Tool coating effects on cutting temperature during metal cutting processes: Comprehensive review and future research directions. Mech. Syst. Signal Process. 2021, 150, 107302. [Google Scholar] [CrossRef]
- Chenrayan, V.; Manivannan, C.; Shahapurkar, K.; Krishna, A.; Tirth, V.; Algahtani, A.; Alarifi, I.M. Machinability Performance Investigation of TiAlN-, DLC-, and CNT-Coated Tools during Turning of Difficult-to-Cut Materials. J. Nanomater. 2022, 2022, 9664365. [Google Scholar] [CrossRef]
- Geometrical Product Specifications (GPS). Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Hultman, L. Thermal stability of nitride thin films. Vacuum 2000, 57, 1–30. [Google Scholar] [CrossRef]
- Ramya, S.; Mudali, U.K. In-situ Raman and X-ray photoelectron spectroscopic studies on the pitting corrosion of modified 9Cr-1Mo steel in neutral chloride solution. Appl. Surf. Sci. 2018, 428, 1106–1118. [Google Scholar] [CrossRef]
- Dang, M.N.; Nhat Minh, D.; Ngoc Trung, L.; Thanh Hai, N.; Trong Lu, L.; Thi Thanh Tam, L.; Tuan Hong, N.; Van Thao, N.; Ngoc Minh, P.; Ngoc Hong, P. One-Step Synthesis of Molybdenum Oxide/graphene Composites. VNU J. Sci. Math.-Phys. 2021, 37, 47–53. [Google Scholar] [CrossRef]
- Boucherit, N.; Hugot-Le Goff, A.; Joiret, S. Influence of Ni, Mo, and Cr on Pitting Corrosionof Steels Studied by Raman Spectroscopy. CORROSION 1992, 48, 569–579. [Google Scholar] [CrossRef]
- Ipaz, L.; Aperador, W.; Caicedo, J.; Esteve, J.; Zambrano, G. A Practical Application of X-Ray Spectroscopy in Ti-Al-N and Cr-Al-N Thin Films. In X-Ray Spectroscopy; Sharma, S.K., Ed.; InTech: London, UK, 2012; ISBN 978-953-307-967-7. [Google Scholar] [CrossRef]
- Zhu, S.; Xiao, L.; Cortie, M.B. Surface enhanced Raman spectroscopy on metal nitride thin films. Vib. Spectrosc. 2016, 85, 146–148. [Google Scholar] [CrossRef]
- Kosari Mehr, A.; Babaei, R.; Mehr, A.K.; Zamani Meymian, M.R. Raman and ultraviolet–visible spectroscopy of titanium chromium nitride thin films. Surf. Eng. 2021, 37, 148–153. [Google Scholar] [CrossRef]
- Das, S.; Guha, S.; Ghadai, R.; Kumar, D.; Swain, B.P. Structural and mechanical properties of CVD deposited titanium aluminium nitride (TiAlN) thin films. Appl. Phys. A 2017, 123, 412. [Google Scholar] [CrossRef]
- Ponon, N.K.; Appleby, D.J.R.; Arac, E.; King, P.J.; Ganti, S.; Kwa, K.S.K.; O’Neill, A. Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films. Thin Solid Films 2015, 578, 31–37. [Google Scholar] [CrossRef]
- Shum, P.W.; Li, K.Y.; Zhou, Z.F.; Shen, Y.G. Structural and mechanical properties of titanium–aluminium–nitride films deposited by reactive close-field unbalanced magnetron sputtering. Coat. Technol. 2004, 185, 245–253. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Rajam, K.S. Raman spectroscopy studies on the thermal stability of TiN, CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings. J. Mater. Res. 2004, 19, 3196–3205. [Google Scholar] [CrossRef]
- Constable, C.P.; Yarwood, J.; Münz, W.-D. Raman microscopic studies of PVD hard coatings. Surf. Coat. Technol. 1999, 116–119, 155–159. [Google Scholar] [CrossRef]
- Spengler, W.; Kaiser, R.; Christensen, A.N.; Müller-Vogt, G. Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN. Phys. Rev. B 1978, 17, 1095–1101. [Google Scholar] [CrossRef]
- Yazdani, A.; Soltanieh, M.; Aghajani, H.; Rastegari, S. A new method for deposition of nano sized titanium nitride on steels. Vacuum 2011, 86, 131–139. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y.; Xiao, W.; Ping, D.; Zhao, X. Twin structure of the lath martensite in low carbon steel. Prog. Nat. Sci. Mater. Int. 2016, 26, 169–172. [Google Scholar] [CrossRef]
- Carbonari, M.J.; Martinelli, J.R. Effects of hot isostatic pressure on titanium nitride films deposited by physical vapor deposition. Mat. Res. 2001, 4, 163–168. [Google Scholar] [CrossRef]
- Danışman, Ş.; Odabaş, D.; Teber, M. The Effect of TiN, TiAlN, TiCN Thin Films Obtained by Reactive Magnetron Sputtering Method on the Wear Behavior of Ti6Al4V Alloy: A Comparative Study. Coatings 2022, 12, 1238. [Google Scholar] [CrossRef]
- Bonu, V.; Jeevitha, M.; Praveen Kumar, V.; Srinivas, G.; Siju; Barshilia, H.C. Solid particle erosion and corrosion resistance performance of nanolayered multilayered Ti/TiN and TiAl/TiAlN coatings deposited on Ti6Al4V substrates. Surf. Coat. Technol. 2020, 387, 125531. [Google Scholar] [CrossRef]
- Ghorbani, M.M.; Taherian, R.; Mohammadi, M.; Bozorg, M. Investigation of physical and electrical properties of TiN-coated SS316L as bipolar plate of proton exchange membrane fuel cells. Surf. Eng. 2021, 37, 822–830. [Google Scholar] [CrossRef]
- Vaca, L.S.; Quintana, J.P.; Guitar, M.A.; Vega, D.; Brühl, S.P.; Márquez, A. Influence of the Pre-Treatments and Process Temperature on the Adhesion of TiN Films Deposited by PBII&D Over Nitrided Austenitic Stainless Steel. Mat. Res. 2019, 22, e20190282. [Google Scholar] [CrossRef]
- Zhang, H.; Li, F.; Jia, Q. Preparation of titanium nitride ultrafine powders by sol–gel and microwave carbothermal reduction nitridation methods. Ceram. Int. 2009, 35, 1071–1075. [Google Scholar] [CrossRef]
- Marlo, M.; Milman, V. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals. Phys. Rev. B 2000, 62, 2899–2907. [Google Scholar] [CrossRef]
- Sharifi Malvajerdi, S.; Sharifi Malvajerdi, A.; Ghanaatshoar, M.; Habibi, M.; Jahdi, H. TiCrN-TiAlN-TiAlSiN-TiAlSiCN multi-layers utilized to increase tillage tools useful lifetime. Sci. Rep. 2019, 9, 19101. [Google Scholar] [CrossRef]
- Cheong, J.Y.; Ding, X.Z.; Tay, B.K.; Zeng, X.T. Thermal Stablility and Oxidation Resistance of CrAlSiN Nano-Structured Coatings Deposited by Lateral Rotating Cathode Arc. Key Eng. Mater. 2010, 447–448, 725–729. [Google Scholar] [CrossRef]
- Sampath Kumar, T.; Balasivanandha Prabu, S.; Manivasagam, G. Metallurgical Characteristics of TiAlN/AlCrN Coating Synthesized by the PVD Process on a Cutting Insert. J. Mater. Eng. Perform. 2014, 23, 2877–2884. [Google Scholar] [CrossRef]
- Bartosik, M.; Rumeau, C.; Hahn, R.; Zhang, Z.L.; Mayrhofer, P.H. Fracture toughness and structural evolution in the TiAlN system upon annealing. Sci. Rep. 2017, 7, 16476. [Google Scholar] [CrossRef]
- Grzesik, W.; Małecka, J. The Oxidation Behaviour and Notch Wear Formation of TiAlN Coated Tools Using Different Oxidation Techniques. Materials 2021, 14, 1330. [Google Scholar] [CrossRef] [PubMed]
- Thi Le, T.-L.; Nguyen, L.T.; Nguyen, H.-H.; Nghia, N.V.; Vuong, N.M.; Hieu, H.N.; Thang, N.V.; Le, V.T.; Nguyen, V.H.; Lin, P.-C.; et al. Titanium Nitride Nanodonuts Synthesized from Natural Ilmenite Ore as a Novel and Efficient Thermoplasmonic Material. Nanomaterials 2020, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Madan, A.; Kim, I.W.; Cheng, S.C.; Yashar, P.; Dravid, V.P.; Barnett, S.A. Stabilization of Cubic AlN in Epitaxial AlN/TiN Superlattices. Phys. Rev. Lett. 1997, 78, 1743–1746. [Google Scholar] [CrossRef]
- Bouabibsa, I.; Lamri, S.; Sanchette, F. Structure, Mechanical and Tribological Properties of Me-Doped Diamond-Like Carbon (DLC) (Me = Al, Ti, or Nb) Hydrogenated Amorphous Carbon Coatings. Coatings 2018, 8, 370. [Google Scholar] [CrossRef]
- Pang, H.; Wang, X.; Zhang, G.; Chen, H.; Lv, G.; Yang, S. Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy. Appl. Surf. Sci. 2010, 256, 6403–6407. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Han, M.; Luo, S.; Jin, J.; Wang, L.; Gu, J.; Miao, H. The Performance of TiAlSiN Coated Cemented Carbide Tools Enhanced by Inserting Ti Interlayers. Metals 2019, 9, 918. [Google Scholar] [CrossRef]
- Demir, H.; Gullu, A.; Ciftci, I.; Seker, U. An Investigation into the Influences of Grain Size and Grinding Parameters on Surface Roughness and Grinding Forces when Grinding. J. Mech. Eng. 2010, 56, 447–454. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, M.N.; Singh, S.; King, H.J.; Navarro-Devia, J.H.; Le, H.; Pattison, T.G.; Hocking, R.K.; Wade, S.A.; Stephens, G.; Papageorgiou, A.; et al. Surface Enhancement of Titanium-Based Coatings on Commercial Hard Steel Cutting Tools. Crystals 2024, 14, 470. https://doi.org/10.3390/cryst14050470
Dang MN, Singh S, King HJ, Navarro-Devia JH, Le H, Pattison TG, Hocking RK, Wade SA, Stephens G, Papageorgiou A, et al. Surface Enhancement of Titanium-Based Coatings on Commercial Hard Steel Cutting Tools. Crystals. 2024; 14(5):470. https://doi.org/10.3390/cryst14050470
Chicago/Turabian StyleDang, Minh Nhat, Surinder Singh, Hannah J. King, John H. Navarro-Devia, Hoang Le, Thomas G. Pattison, Rosalie K. Hocking, Scott A. Wade, Guy Stephens, Angelo Papageorgiou, and et al. 2024. "Surface Enhancement of Titanium-Based Coatings on Commercial Hard Steel Cutting Tools" Crystals 14, no. 5: 470. https://doi.org/10.3390/cryst14050470
APA StyleDang, M. N., Singh, S., King, H. J., Navarro-Devia, J. H., Le, H., Pattison, T. G., Hocking, R. K., Wade, S. A., Stephens, G., Papageorgiou, A., Manzano, A., & Wang, J. (2024). Surface Enhancement of Titanium-Based Coatings on Commercial Hard Steel Cutting Tools. Crystals, 14(5), 470. https://doi.org/10.3390/cryst14050470