Growth, Structure, and Electrical Properties of AgNbO3 Antiferroelectric Single Crystal
Abstract
1. Introduction
2. Experimental Procedures
2.1. Fabrication
2.2. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Sun, Z.; Zhang, J.; Luo, H.; Zhang, Q.; Yao, Y.; Deng, S.; Qi, H.; Liu, J.; Gallington, L.C.; et al. Chemical Design of Pb-Free Relaxors for Giant Capacitive Energy Storage. J. Am. Chem. Soc. 2023, 145, 11764–11772. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.-F.; Zhang, S. Perovskite Lead-Free Dielectrics for Energy Storage Applications. Prog. Mater Sci. 2019, 102, 72–108. [Google Scholar] [CrossRef]
- Ma, L.; Che, Z.; Xu, C.; Cen, Z.; Feng, Q.; Chen, X.; Toyohisa, F.; Li, J.-F.; Zhang, S.; Luo, N. High Energy Storage Density and Efficiency in AgNbO3 Based Relaxor Antiferroelectrics with Reduced Silver Content. J. Eur. Ceram. Soc. 2023, 43, 3228–3235. [Google Scholar] [CrossRef]
- Lu, Z.; Bao, W.; Wang, G.; Sun, S.-K.; Li, L.; Li, J.; Yang, H.; Ji, H.; Feteira, A.; Li, D.; et al. Mechanism of Enhanced Energy Storage Density in AgNbO3-Based Lead-Free Antiferroelectrics. Nano Energy 2021, 79, 105423. [Google Scholar] [CrossRef]
- Han, K.; Luo, N.; Mao, S.; Zhuo, F.; Liu, L.; Peng, B.; Chen, X.; Hu, C.; Zhou, H.; Wei, Y. Ultrahigh Energy-Storage Density in A-/B-Site Co-Doped AgNbO3 Lead-Free Antiferroelectric Ceramics: Insight into the Origin of Antiferroelectricity. J. Mater. Chem. A 2019, 7, 26293–26301. [Google Scholar] [CrossRef]
- Luo, N.; Ma, L.; Luo, G.; Xu, C.; Rao, L.; Chen, Z.; Cen, Z.; Feng, Q.; Chen, X.; Toyohisa, F.; et al. Well-Defined Double Hysteresis Loop in NaNbO3 Antiferroelectrics. Nat. Commun. 2023, 14, 1776. [Google Scholar] [CrossRef]
- Fu, D.; Endo, M.; Taniguchi, H.; Taniyama, T.; Itoh, M. AgNbO3: A Lead-Free Material with Large Polarization and Electromechanical Response. Appl. Phys. Lett. 2007, 90, 252907. [Google Scholar] [CrossRef]
- Gao, J.; Li, Q.; Zhang, S.; Li, J.-F. Lead-Free Antiferroelectric AgNbO3: Phase Transitions and Structure Engineering for Dielectric Energy Storage Applications. J. Appl. Phys. 2020, 128, 070903. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Zhao, L.; Lee, K.-Y.; Liu, Q.; Studer, A.; Hinterstein, M.; Zhang, S.; Li, J.-F. Enhanced Antiferroelectric Phase Stability in La-Doped AgNbO3: Perspectives from the Microstructure to Energy Storage Properties. J. Mater. Chem. A 2019, 7, 2225–2232. [Google Scholar] [CrossRef]
- Shi, X.; Eckstein, U.; Lang, S.; Cicconi, M.R.; Khansur, N.H. Temperature-Dependent Ferroelastic Behaviour of Antiferroelectric AgNbO3. Acta Mater. 2022, 232, 117931. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Song, J.; Zhang, S.; Wang, J.; Dai, X.; Liu, B.; Dong, G.; Zhao, L. AgNbO3 Antiferroelectric Film with High Energy Storage Performance. J. Mater. 2021, 7, 1294–1300. [Google Scholar] [CrossRef]
- Yang, D.; Su, M.; Yuan, C.; Wu, J.; Meng, L.; Xu, J.; Lei, W.; Feng, Q.; Zhu, B.; Zhou, C.; et al. AgNbO3-Based Antiferroelectric Ceramics with Superior Energy Storage Performance via Gd/Ta Substitution at A/B Sites. Ceram. Int. 2023, 49, 18143–18152. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, S.; Huang, J.; Shen, M.; Jiang, S.; He, Y.; Zhang, Q. Realizing Simultaneously Excellent Energy Storage and Discharge Properties in AgNbO3 Based Antiferroelectric Ceramics via La3+ and Ta5+ Co-Substitution Strategy. J. Mater. 2023, 9, 410–421. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, Z.; Bai, Y.; Guo, F.; Chen, J. Surface Plasma Treatment Boosting Antiferroelectricity and Energy Storage Performance of AgNbO3 Film. J. Eur. Ceram. Soc. 2023, 44, 2923–2933. [Google Scholar] [CrossRef]
- Zhou, J.; Du, J.; Chen, L.; Li, Y.; Xu, L.; Zhao, Q.; Yang, H.; Ding, J.; Sun, Z.; Hao, X.; et al. Enhanced the Energy Storage Performance in AgNbO3-based Antiferroelectric Ceramics via Manipulation of Oxygen Vacancy. J. Eur. Ceram. Soc. 2023, 43, 6059–6068. [Google Scholar] [CrossRef]
- Luo, N.; Han, K.; Cabral, M.J.; Liao, X.; Zhang, S.; Liao, C.; Zhang, G.; Chen, X.; Feng, Q.; Li, J.-F.; et al. Constructing Phase Boundary in AgNbO3 Antiferroelectrics: Pathway Simultaneously Achieving High Energy Density and Efficiency. Nat. Commun. 2020, 11, 4824. [Google Scholar] [CrossRef]
- Gao, S.; Huang, Y.; Jiang, Y.; Shen, M.; Huang, H.; Jiang, S.; He, Y.; Zhang, Q. Ultrahigh Energy Density and Excellent Discharge Properties in Ce4+ and Ta5+ Co-Modified AgNbO3 Relaxor Antiferroelectric Ceramics via Multiple Design Strategies. Acta Mater. 2023, 246, 118730. [Google Scholar] [CrossRef]
- Chien, R.R.; Tu, C.-S.; Schmidt, V.H.; Wang, F.-T. Electric-Field-Induced and Temperature-Induced Phase Transitions in High-Strain Ferroelectric Pb (Mg1/3Nb2/3)0.67 Ti0.33O3 Single Crystal. J. Phys. Condens. Matter 2006, 18, 8337–8344. [Google Scholar] [CrossRef]
- Bokov, A.A.; Long, X.; Ye, Z.-G. Optically Isotropic and Monoclinic Ferroelectric Phases in Pb (Zr1−xTix) O3 (PZT) Single Crystals near Morphotropic Phase Boundary. Phys. Rev. B 2010, 81, 172103. [Google Scholar] [CrossRef]
- Yashima, M.; Matsuyama, S.; Sano, R.; Itoh, M.; Tsuda, K.; Fu, D. Structure of Ferroelectric Silver Niobate AgNbO3. Chem. Mater. 2011, 23, 1643–1645. [Google Scholar] [CrossRef]
- Ratuszna, A.; Pawluk, J.; Kania, A. Temperature Evolution of the Crystal Structure of AgNbO3. Phase Transit. 2003, 76, 611–620. [Google Scholar] [CrossRef]
- Khor, C.M.; Khan, M.M.; Khan, M.Y.; Khan, A.; Harunsani, M.H. Zr-Doped AgNbO3 with Enhanced Visible Light-Induced Photocatalytic Performance. Results Chem. 2023, 5, 100891. [Google Scholar] [CrossRef]
- Khor, C.M.; Khan, M.M.; Khan, A.; Khan, M.Y.; Harunsani, M.H. La-Substituted AgNbO3 for Photocatalytic Degradation of Rhodamine B and Methylene Blue Dyes. React. Kinet. Mech. Catal. 2022, 135, 1687–1701. [Google Scholar] [CrossRef]
- Ai, J.; Chen, X.; Luo, L.; Zheng, R.; Yu, L. Novel Transparent Eu and Hf Co-Doped AgNbO3 Antiferroelectric Ceramic with High-Quality Energy-Storage Performance. Ceram. Int. 2022, 48, 23630–23637. [Google Scholar] [CrossRef]
- Palaimienė, E.; Macutkevič, J.; Banys, J.; Gruszka, I.; Kania, A. Broadband and Infrared Spectroscopy of Ag0.98Li0.02NbO3 Ceramics. Lith. J. Phys. 2020, 60, 247–252. [Google Scholar] [CrossRef]
- Fousek, J.; Janovec, V. The Orientation of Domain Walls in Twinned Ferroelectric Crystals. J. Appl. Phys. 1969, 40, 135–142. [Google Scholar] [CrossRef]
- Zheng, L.; Li, S.; Sang, S.; Wang, J.; Huo, X.; Wang, R.; Yuan, Z.; Cao, W. Complete Set of Material Constants of Single Domain (K, Na) (Nb, Ta) O3 Single Crystal and Their Orientation Dependence. Appl. Phys. Lett. 2014, 105, 212902. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhang, D.; Zhou, X.; Zhang, M.; Zhang, L.; Zhang, H.; Xue, G.; Abrahams, I.; Yan, H. Investigation of Transitions between the M-Phases in AgNbO3 Based Ceramics. J. Mater. Chem. A 2021, 9, 3520–3529. [Google Scholar] [CrossRef]
- Hafid, M.; Kugel, G.E.; Kania, A.; Roleder, K.; Fontana, M.D. Study of the Phase Transition Sequence of Mixed Silver Tantalate-Niobate (AgTa1−xNbxO3) by Inelastic Light Scattering. J. Phys. Condens. Matter 1992, 4, 2333–2345. [Google Scholar] [CrossRef]
- Zhuo, F.; Li, Q.; Zhou, Y.; Ji, Y.; Yan, Q.; Zhang, Y.; Xi, X.; Chu, X.; Cao, W. Large Field-Induced Strain, Giant Strain Memory Effect, and High Thermal Stability Energy Storage in (Pb, La) (Zr, Sn, Ti) O3 Antiferroelectric Single Crystal. Acta Mater. 2018, 148, 28–37. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Q.; Zhang, S.; Li, J.-F. Lead-Free AgNbO3 Anti-Ferroelectric Ceramics with an Enhanced Energy Storage Performance Using MnO2 Modification. J. Mater. Chem. C 2016, 4, 8380–8384. [Google Scholar] [CrossRef]
- Cai, K.; Yan, X.; Deng, P.; Jin, L.; Bai, Y.; Zeng, F.; Guo, D. Phase Coexistence and Evolution in Sol-Gel Derived BY-PT-PZ Ceramics with Significantly Enhanced Piezoelectricity and High Temperature Stability. J. Mater. 2019, 5, 394–403. [Google Scholar] [CrossRef]
- Wada, S.; Uraki, S.; Kakemoto, H.; Tsurumi, T. Growth of Silver Niobate Single Crystals and Their Dielectric Properties. J. Ceram. Soc. Jpn. 2004, 112, S780–S784. [Google Scholar]
- Kania, A. Anisotropic Dielectric Properties of AgNbO3 Single Crystals. Ferroelectrics 2010, 404, 152–156. [Google Scholar] [CrossRef]
- Zhao, W.; Fu, Z.; Deng, J.; Li, S.; Han, Y.; Li, M.-R.; Wang, X.; Hong, J. Observation of Ferroelastic and Ferroelectric Domains in AgNbO3 Single Crystal. Chin. Phys. Lett. 2021, 38, 037701. [Google Scholar] [CrossRef]
- Kitanaka, Y.; Egawa, T.; Noguchi, Y.; Miyayama, M. Enhanced Polarization Properties of Ferrielectric AgNbO3 Single Crystals Grown by Czochralski Method under High-Pressure Oxygen Atmosphere. Jpn. J. Appl. Phys. 2016, 55, 10TB03. [Google Scholar] [CrossRef]
T (°C) | Space Group | Rwp (%) | χ2 | a (Å) | b (Å) | c (Å) |
---|---|---|---|---|---|---|
RT | Pmc21 | 7.13 | 1.841 | 5.55476 | 5.61136 | 15.65993 |
150 | Pbcm | 8.22 | 1.848 | 5.55789 | 5.604412 | 15.67906 |
300 | Pbcm | 9.19 | 1.915 | 5.56053 | 5.59716 | 15.72024 |
450 | Cmcm | 9.89 | 1.939 | 5.57109 | 5.59778 | 15.75651 |
The [001]-Oriented AN Single Crystal AN Single Crystal | AN Ceramic | Previous Research for AN Single Crystal | ||
---|---|---|---|---|
Phase transition temperature (°C) | M1-M2 | 80 | 67 | ~80 |
M2-M3 | 295 | 268 | ~280 | |
M3-O | 412 | 354 | ~390 [33] | |
Dielectric constant (100 kHz) | 400–2000 | 200–1000 | 300–2000 [34] | |
Dielectric loss (100 kHz) | 0–0.4 | 0–1.0 | 0–0.4 | |
Electric domain | Size (μm) | 10–20 | ||
Domain Wall (°) | 90 | 90 [35] | ||
Infrared transmittance (1000–4000 cm−1) | 1000–1500 (%) | 56–62 | 40–59 | |
1500–4000 (%) | 42–56 | 20–40 | ||
Pmax (μC/cm2) | 42.2 | 42.1 | 22 (E//[110]) [36] | |
Electrical properties (200 kV/cm) | Pr (μC/cm2) | 11.3 | 7.8 | |
Wrec (J/cm3) | 1.34 | 1.98 | ||
η (%) | 30 | 29.80 | ||
EA (kV/cm) | 59 | |||
EF (kV/cm) | 151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Chen, Z.; Li, B.; Feng, S.; Luo, N. Growth, Structure, and Electrical Properties of AgNbO3 Antiferroelectric Single Crystal. Crystals 2024, 14, 235. https://doi.org/10.3390/cryst14030235
Zhao D, Chen Z, Li B, Feng S, Luo N. Growth, Structure, and Electrical Properties of AgNbO3 Antiferroelectric Single Crystal. Crystals. 2024; 14(3):235. https://doi.org/10.3390/cryst14030235
Chicago/Turabian StyleZhao, Dengxiaojiang, Zhenpei Chen, Borui Li, Shi Feng, and Nengneng Luo. 2024. "Growth, Structure, and Electrical Properties of AgNbO3 Antiferroelectric Single Crystal" Crystals 14, no. 3: 235. https://doi.org/10.3390/cryst14030235
APA StyleZhao, D., Chen, Z., Li, B., Feng, S., & Luo, N. (2024). Growth, Structure, and Electrical Properties of AgNbO3 Antiferroelectric Single Crystal. Crystals, 14(3), 235. https://doi.org/10.3390/cryst14030235