Nanocrystalline (Cu0.5Ni0.5)yFe3−yO4 Ferrites: Synthesis and Characterization
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Narang, S.B.; Pubby, K. Nickel Spinel Ferrites: A review. J. Magn. Magn. Mater. 2021, 519, 167163. [Google Scholar] [CrossRef]
- Pham, T.N.; Huy, T.Q.; Le, A.-T. Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications. RSC Adv. 2020, 10, 31622–31661. [Google Scholar] [CrossRef]
- Hao, A.; Ning, X. Recent Advances in Spinel Ferrite-Based Thin Films: Synthesis, Performances, Applications, and Beyond. Front. Mater. 2021, 8, 718869. [Google Scholar] [CrossRef]
- Amiri, M.; Salavati-Niasari, M.; Akbari, A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 2019, 265, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Maksoud, M.I.A.A.; Ghobashy, M.M.; Kodous, A.S.; Fahim, R.A.; Osman, A.I.; Al-Muhtaseb, A.H.; Rooney, D.W.; Mamdouh, M.A.; Nady, N.; Ashour, A.H. Insights on magnetic spinel ferrites for targeted drug delivery and hyperthermia applications. Nanotechnol. Rev. 2022, 11, 372–413. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Nkambule, T.T.; Mamba, B.B. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater. Sci. Eng. C 2020, 107, 110314. [Google Scholar] [CrossRef]
- Soufi, A.; Hajjaoui, H.; Elmoubarki, R.; Abdennouri, M.; Qourzal, S.; Barka, N. Spinel ferrites nanoparticles: Synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants—A review. Appl. Surf. Sci. Adv. 2021, 6, 100145. [Google Scholar] [CrossRef]
- Qin, H.; He, Y.; Xu, P.; Huang, D.; Wang, Z.; Wang, H.; Wang, Z.; Zhao, Y.; Tian, Q.; Wang, C. Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Adv. Colloid Interface Sci. 2021, 294, 102486. [Google Scholar] [CrossRef]
- Peng, Y.; Tang, H.; Yao, B.; Gao, X.; Yang, X.; Zhou, Y. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. J. Chem. Eng. 2021, 414, 128800. [Google Scholar] [CrossRef]
- Pund, S.N.; Nagwade, P.A.; Nagawade, A.V.; Thopate, S.R.; Bagade, A.V. Preparation techniques for zinc ferrites and their applications: A review. Mater. Today Proc. 2022, 60, 2194–2208. [Google Scholar] [CrossRef]
- Velinov, N.; Petrova, T.; Genova, I.; Ivanov, I.; Tsoncheva, T.; Idakiev, V.; Kunev, B.; Mitov, I. Synthesis and Mössbauer spectroscopic investigation of copper-manganese ferrite catalysts for water-gas shift reaction and methanol decomposition. Mater. Res. Bull. 2017, 95, 556–562. [Google Scholar] [CrossRef]
- Shamim, K.; Sharma, S.; Choudhary, R.J. Role of ferrite phase on the structure, dielectric and magnetic properties of (1-x) KNNL/x NFO composites ceramics. J. Magn. Magn. Mater. 2019, 469, 1–7. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, T.; Wang, J.; Zhao, R.; Ma, Y.; Wang, F.; Xu, X. Influence of Ce-Mn co-doping on the structure and magnetic properties of cobalt ferrites. J. Alloys Compd. 2022, 929, 167256. [Google Scholar] [CrossRef]
- Goud, S.; Venkatesh, N.; Kumar, D.R.; Barapati, S.; Veerasomaiah, P. Study of structural, optical, photocatalytic, electromagnetic, and biological properties Co0.75Mg0.25CexFe2−xO4 of Mg-Co nano ferrites. Inorg. Chem. Commun. 2022, 145, 109969. [Google Scholar] [CrossRef]
- Noreen, S.; Hussain, A.; Tahir, M.B.; Ziya, A.B.; Rehman, J.U.; Usman, M.; Khan, S.A.; Akhtar, S. Structural, mechanical, thermodynamic, electronic, magnetic and optical properties of ZnFe2O4 ferrite: A DFT study. Opt. Mater. 2022, 133, 112930. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Ivanova, I.V.; Zaitseva, N.A.; Samigullina, R.F.; Krasnenko, T.I. Solid-state synthesis of ZnMn2O4 spinel: Sequence of phase transformations, thermal stability, localization and charge state of manganese ions in the intermediate and final reaction products. Solid State Sci. 2023, 136, 107110. [Google Scholar] [CrossRef]
- Velinov, N.; Koleva, K.; Tsoncheva, T.; Manova, E.; Paneva, D.; Tenchev, K.; Kunev, B.; Mitov, I. Nanosized Cu0.5Co0.5Fe2O4 ferrite as catalyst for methanol decomposition: Effect of preparation procedure. Catal. Commun. 2012, 32, 41–46. [Google Scholar] [CrossRef]
- Velinov, N.; Manova, E.; Tsoncheva, T.; Estournès, C.; Paneva, D.; Tenchev, K.; Petkova, V.; Koleva, K.; Kunev, B.; Mitov, I. Spark plasma sintering synthesis of Ni1−xZnxFe2O4 ferrites: Mössbauer and catalytic study. Solid State Sci. 2012, 14, 1092–1099. [Google Scholar] [CrossRef]
- Velinov, N.; Koleva, K.; Tsoncheva, T.; Paneva, D.; Manova, E.; Tenchev, K.; Kunev, B.; Genova, I.; Mitov, I. Copper-cobalt ferrites as catalysts for methanol decomposition. Cent. Eur. J. Chem. 2014, 12, 250–259. [Google Scholar] [CrossRef]
- Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef]
- Lazarova, T.; Georgieva, M.; Tzankov, D.; Voykova, D.; Aleksandrov, L.; Cherkezova-Zheleva, Z.; Kovacheva, D. Influence of the type of fuel used for the solution combustion synthesis on the structure, morphology and magnetic properties of nanosized NiFe2O4. J. Alloys Comp. 2017, 700, 272–283. [Google Scholar] [CrossRef]
- Lazarova, T.; Kovacheva, D.; Georgieva, M.; Tzankov, D.; Tyuliev, G.; Spassova, I.; Naydenov, A. Tunable nanosized spinel manganese ferrites synthesized by solution combustion method. Appl. Surf. Sci. 2019, 496, 143571. [Google Scholar] [CrossRef]
- Perez-Hernandez, R.; Avendano, A.D.; Rosas, E.; Rodrıguez, V. Hydrogen Production by Methanol Steam Reforming Over Pd/ZrO2–TiO2 Catalysts. Top. Catal. 2011, 54, 572–578. [Google Scholar] [CrossRef]
- López, P.; Mondragón-Galicia, G.; Espinosa-Pesqueira, M.E.; Mendoza-Anaya, D.; Fernández, M.E.; Gómez-Cortés, A.; Bonifacio, J.; Martínez-Barrera, G.; Pérez-Hernández, R. Hydrogen production from oxidative steam reforming of methanol: Effect of the Cu and Ni impregnation on ZrO2 and their molecular simulation studies. Int. J. Hydrogen Energy 2012, 37, 9018–9027. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Yan, Y. Catalytic oxidation of ethyl acetate over CuO/ZSM-5 catalysts: Effect of preparation method. J. Taiwan Inst. Chem. Eng. 2018, 84, 162–172. [Google Scholar] [CrossRef]
- Qin, Y.; Shen, F.; Zhu, T.; Honga, W.; Liu, X. Catalytic oxidation of ethyl acetate over LaBO3 (B=Co, Mn, Ni, Fe) perovskites supported silver catalysts. RSC Adv. 2018, 8, 33425. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; Wiley-VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2003; pp. 1–664. [Google Scholar] [CrossRef]
- Kalska-Szostko, B.; Wykowska, U.; Satula, D.; Nordblad, P. Thermal treatment of magnetite nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M.C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Lau, L.W.M.; Gerson, A.; Smart, R.S.C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- ALOthman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Jacobs, J.P.; Maltha, A.; Reintjes, J.G.H.; Drimal, J.; Ponec, V.; Brongersma, H.H. The Surface of Catalytically Active Spinels. J. Catal. 1994, 147, 294–300. [Google Scholar] [CrossRef]
- El-Shobaky, H.G.; Mokhtar, M.M. Effect of Li2O and CoO-doping of CuO/Fe2O3 system on its surface and catalytic properties. Appl. Surf. Sci. 2007, 253, 9407–9413. [Google Scholar] [CrossRef]
- Liu, X.-W.; Zhao, S.; Meng, Y.; Peng, Q.; Dearden, A.K.; Huo, C.-F.; Yang, Y.; Li, Y.-W.; Wen, X.-D. Mössbauer spectroscopy of iron carbides: From prediction to experimental confirmation. Sci. Rep. 2016, 6, 26184. [Google Scholar] [CrossRef]
- Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites. Hyperfine Interact. 2016, 237, 24. [Google Scholar] [CrossRef]
Sample | Phase | D, nm | a, Å |
---|---|---|---|
(Cu0.5Ni0.5)0.75Fe2.25O4 | spinel | 8.52 | 8.3534 |
(Cu0.5Ni0.5)0.5Fe2.5O4 | spinel | 8.83 | 8.3478 |
(Cu0.5Ni0.5)0.25Fe2.75O4 | spinel | 10.18 | 8.3436 |
Sample | Components | δ, mm/s | Δ (2ε), mm/s | Bhf, T | Γexp, mm/s | G, % |
---|---|---|---|---|---|---|
(Cu0.5Ni0.5)0.75Fe2.25O4 | Sx1-Fe3+octa | 0.31 | −0.01 | 47.6 | 0.65 | 9 |
Sx2-Fe3+tetra | 0.28 | 0.00 | 44.1 | 0.91 | 9 | |
Sx3-Fe3+ | 0.26 | 0.00 | 37.2 | 2.65 | 55 | |
Db-Fe3+ | 0.31 | 0.71 | - | 0.73 | 27 | |
(Cu0.5Ni0.5)0.5Fe2.5O4 | Sx1-Fe3+octa | 0.32 | 0.01 | 47.7 | 0.65 | 10 |
Sx2-Fe3+tetra | 0.29 | 0.00 | 43.8 | 0.95 | 8 | |
Sx3-Fe3+ | 0.29 | 0.00 | 37.3 | 2.73 | 64 | |
Db-Fe3+ | 0.31 | 0.71 | - | 0.78 | 18 | |
(Cu0.5Ni0.5)0.25Fe2.75O4 | Sx1-Fe3+octa | 0.31 | −0.01 | 48.8 | 0.56 | 6 |
Sx2-Fe3+tetra | 0.28 | 0.00 | 45.7 | 0.76 | 8 | |
Sx3-Fe3+ | 0.29 | 0.00 | 39.3 | 2.65 | 67 | |
Db-Fe3+ | 0.31 | 0.71 | - | 0.83 | 19 | |
(Cu0.5Ni0.5)0.75Fe2.25O4 LNT | Sx1-Fe3+octa | 0.45 | −0.01 | 51.5 | 0.65 | 34 |
Sx2-Fe3+tetra | 0.36 | 0.00 | 49.2 | 0.62 | 32 | |
Sx3-Fe3+ | 0.37 | 0.00 | 45.1 | 1.78 | 28 | |
Db-Fe3+ | 0.41 | 0.78 | - | 0.6 | 6 | |
(Cu0.5Ni0.5)0.5Fe2.5O4 LNT | Sx1-Fe3+octa | 0.45 | −0.01 | 51.4 | 0.65 | 34 |
Sx2-Fe3+tetra | 0.37 | 0.00 | 49.1 | 0.59 | 31 | |
Sx3-Fe3+ | 0.36 | 0.00 | 45.7 | 1.47 | 33 | |
Db-Fe3+ | 0.40 | 0.69 | - | 0.54 | 2 | |
(Cu0.5Ni0.5)0.25Fe2.75O4 LNT | Sx1-Fe3+octa | 0.44 | 0.00 | 51.2 | 0.65 | 33 |
Sx2-Fe3+tetra | 0.38 | 0.00 | 49.0 | 0.61 | 30 | |
Sx3-Fe3+ | 0.38 | 0.00 | 45.2 | 1.50 | 36 | |
Db-Fe3+ | 0.36 | 0.79 | - | 0.54 | 1 |
Sample | O, at. % | Cu, at. % | Fe, at. % | Ni, at. % |
---|---|---|---|---|
(Cu0.5Ni0.5)0.75Fe2.25O4 | 68.5 | 14.3 | 13.7 | 3.5 |
(Cu0.5Ni0.5)0.5Fe2.5O4 | 73.7 | 6.5 | 17.1 | 2.7 |
(Cu0.5Ni0.5)0.25Fe2.75O4 | 75.2 | 4.5 | 19.0 | 1.3 |
Sample | SBET [m2/g] | Vt [cm3/g] | Dav [nm] |
---|---|---|---|
(Cu0.5Ni0.5)0.75Fe2.25O4 | 136 | 0.28 | 6.8 |
(Cu0.5Ni0.5)0.5Fe2.5O4 | 133 | 0.23 | 7.0 |
(Cu0.5Ni0.5)0.25Fe2.75O4 | 128 | 0.21 | 6.6 |
Sample | Components | δ, mm/s | Δ (2ε), mm/s | Bhf, T | Γexp, mm/s | G, % |
---|---|---|---|---|---|---|
(Cu0.5Ni0.5)0.75Fe2.25O4-EA | Sx1-Fe3+octa | 0.34 | −0.01 | 48.7 | 0.67 | 14 |
Sx2-Fe3+tetra | 0.27 | 0.00 | 45.7 | 0.67 | 14 | |
Sx3-Fe3+ | 0.29 | 0.00 | 40.7 | 2.22 | 67 | |
Db-Fe3+ | 0.28 | 0.67 | - | 0.82 | 5 | |
(Cu0.5Ni0.5)0.5Fe2.5O4-EA | Sx1-Fe3+octa | 0.32 | −0.01 | 48.5 | 0.65 | 14 |
Sx2-Fe3+tetra | 0.28 | 0.00 | 45.5 | 0.73 | 11 | |
Sx3-Fe3+ | 0.30 | 0.00 | 40.2 | 2.35 | 71 | |
Db-Fe3+ | 0.32 | 0.71 | - | 0.78 | 4 | |
(Cu0.5Ni0.5)0.25Fe2.75O4-EA | Sx1-Fe3+octa | 0.32 | 0.00 | 49.9 | 0.53 | 16 |
Sx2-Fe3+tetra | 0.29 | 0.00 | 47.0 | 0.70 | 13 | |
Sx3-Fe3+ | 0.31 | 0.00 | 41.4 | 2.31 | 64 | |
Db-Fe3+ | 0.32 | 0.75 | - | 0.72 | 7 | |
(Cu0.5Ni0.5)0.75Fe2.25O4-MD | Sx1-χ-Fe5C2 | 0.24 | 0.03 | 19.8 | 0.63 | 61 |
Sx2-χ-Fe5C2 | 0.21 | 0.02 | 17.5 | 0.53 | 32 | |
Sx3-χ-Fe5C2 | 0.18 | −0.06 | 11.4 | 0.45 | 7 | |
(Cu0.5Ni0.5)0.5Fe2.5O4-MD | Sx1-χ-Fe5C2 | 0.24 | 0.04 | 19.9 | 0.59 | 56 |
Sx2-χ-Fe5C2 | 0.21 | 0.00 | 17.7 | 0.57 | 37 | |
Sx3-χ-Fe5C2 | 0.18 | −0.07 | 11.4 | 0.45 | 7 | |
(Cu0.5Ni0.5)0.25Fe2.75O4-MD | Sx1-χ-Fe5C2 | 0.21 | 0.04 | 20.6 | 0.40 | 42 |
Sx2-χ-Fe5C2 | 0.20 | −0.02 | 18.7 | 0.62 | 49 | |
Sx3-χ-Fe5C2 | 0.18 | −0.06 | 10.7 | 0.45 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velinov, N.; Petrova, T.; Karashanova, D.; Atanasova, G.; Kovacheva, D. Nanocrystalline (Cu0.5Ni0.5)yFe3−yO4 Ferrites: Synthesis and Characterization. Crystals 2024, 14, 233. https://doi.org/10.3390/cryst14030233
Velinov N, Petrova T, Karashanova D, Atanasova G, Kovacheva D. Nanocrystalline (Cu0.5Ni0.5)yFe3−yO4 Ferrites: Synthesis and Characterization. Crystals. 2024; 14(3):233. https://doi.org/10.3390/cryst14030233
Chicago/Turabian StyleVelinov, Nikolay, Tanya Petrova, Daniela Karashanova, Genoveva Atanasova, and Daniela Kovacheva. 2024. "Nanocrystalline (Cu0.5Ni0.5)yFe3−yO4 Ferrites: Synthesis and Characterization" Crystals 14, no. 3: 233. https://doi.org/10.3390/cryst14030233
APA StyleVelinov, N., Petrova, T., Karashanova, D., Atanasova, G., & Kovacheva, D. (2024). Nanocrystalline (Cu0.5Ni0.5)yFe3−yO4 Ferrites: Synthesis and Characterization. Crystals, 14(3), 233. https://doi.org/10.3390/cryst14030233