The Study on the Critical Temperature and Gap-to-Tc Ratio of Yttrium Hydride Superconductors
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef]
- Einaga, M.; Sakata, M.; Ishikawa, T.; Shimizu, K.; Eremets, M.I.; Drozdov, A.P.; Troyan, I.A.; Hirao, N.; Ohishi, Y. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 2016, 12, 835–838. [Google Scholar] [CrossRef]
- Somayazulu, M.; Ahart, M.; Mishra, A.K.; Geballe, Z.M.; Baldini, M.; Meng, Y.; Hemley, R.J. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 2019, 122, 027001. [Google Scholar] [CrossRef] [PubMed]
- Drozdov, A.P.; Kong, P.P.; Minkov, V.S.; Besedin, S.P.; Kuzovnikov, M.A.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Graf, D.E.; Prakapenka, V.B.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Naumov, I.I.; Hoffmann, R.; Hemley, R.J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA 2017, 114, 6990–6995. [Google Scholar] [CrossRef] [PubMed]
- Snider, E.; Dasenbrock-Gammon, N.; McBride, R.; Wang, X.; Meyers, N.; Lawler, K.V.; Zurek, E.; Salamat, A.; Dias, R.P. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures. Phys. Rev. Lett. 2021, 126, 117003. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Minkov, V.S.; Kuzovnikov, M.A.; Drozdov, A.P.; Besedin, S.P.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Prakapenka, V.B.; Chariton, S.; et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 2021, 12, 5075. [Google Scholar] [CrossRef]
- Li, Y.; Hao, J.; Liu, H.; Tse, J.S.; Wang, Y.; Ma, Y. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep. 2015, 5, 9948. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Sun, Y.; Pickard, C.J.; Needs, R.J.; Wu, Q.; Ma, Y. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett. 2017, 119, 107001. [Google Scholar] [CrossRef]
- Pickard, C.J.; Errea, I.; Eremets, M.I. Superconducting hydrides under pressure. Annu. Rev. Condens. 2020, 11, 57–76. [Google Scholar] [CrossRef]
- Franck, J.P.; Keeler, W.J. Pressure Dependence of the Energy Gap of Superconducting Pb. Phys. Rev. Lett. 1968, 20, 379. [Google Scholar] [CrossRef]
- Galkin, A.A.; Svistunov, V.M.; Dikii, A.P. Effect of high pressure on the energy gap of Indium and Thallium superconducting films. Phys. Status Solidi B 1969, 35, 421–426. [Google Scholar] [CrossRef]
- Talantsev, E.F. Classifying superconductivity in compressed H3S. Mod. Phys. Lett. B 2019, 33, 1950195. [Google Scholar] [CrossRef]
- Durajski, A.P.; Szczęśniak, R.; Li, Y.; Wang, C.; Cho, J.H. Isotope effect in superconducting lanthanum hydride under high compression. Phys. Rev. B 2020, 101, 214501. [Google Scholar] [CrossRef]
- Durajski, A.P.; Wang, C.; Li, Y.; Szczȩśniak, R.; Cho, J.H. Evidence of phonon-mediated superconductivity in LaH10 at high pressure. Ann. Phys. 2021, 533, 2000518. [Google Scholar] [CrossRef]
- Troyan, I.A.; Semenok, D.V.; Kvashnin, A.G.; Sadakov, A.V.; Sobolevskiy, O.A.; Pudalov, V.M.; Ivanova, A.G.; Prakapenka, V.B.; Greenberg, E.; Gavriliuk, A.G.; et al. Anomalous high-temperature superconductivity in YH6. Adv. Mater. 2021, 33, 2006832. [Google Scholar] [CrossRef]
- Ruangrungrote, S.; Chanpoom, T.; Thaninworapak, R.; Udomsamuthirun, P. Investigation of the gap-to-Tc ratio of LaH10 and LaD10 superconductors. Int. J. Mod. Phys. A 2023, 37, 2350230. [Google Scholar] [CrossRef]
- Heil, C.; Di Cataldo, S.; Bachelet, G.B.; Boeri, L. Superconductivity in sodalite-like yttrium hydride clathrates. Phys. Rev. B 2019, 99, 220502. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y. Crystal structures of YH3 under high pressure. Solid State Commun. 2011, 151, 388–391. [Google Scholar] [CrossRef]
- Machida, A.; Ohmura, A.; Watanuki, T.; Aoki, K.; Takemura, K. Long-period stacking structures in yttrium trihydride at high pressure. Phys. Rev. B 2007, 76, 052101. [Google Scholar] [CrossRef]
- Kim, D.Y.; Scheicher, R.H.; Ahuja, R. Predicted high-temperature superconducting state in the hydrogen-dense transition-metal hydride YH3 at 40 K and 17.7 GPa. Phys. Rev. Lett. 2009, 103, 077002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, K.; Sun, Y.; Ma, L.; Wang, Y.; Zou, B.; Liu, G.; Zhou, M.; Wang, H. Synthesis and superconductivity in yttrium superhydrides under high pressure. Chin. Phys. B 2022, 31, 106201. [Google Scholar] [CrossRef]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Microscopic theory of superconductivity. Phys. Rev. 1957, 106, 162. [Google Scholar] [CrossRef]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef]
- Udomsamuthirun, P.; Ratanaburi, S.; Saentalard, N.; Yoksan, S. The ratio 2Δ(0)/Tc in BCS superconductivity. J. Supercond. 1996, 9, 603–604. [Google Scholar] [CrossRef]
- Okoye, C.M.I. Isotope shift exponent in two-band high-Tc superconductors with linear- energy-dependent electronic density of states. Phys. C Supercond. 1999, 313, 197–204. [Google Scholar] [CrossRef]
- Udomsamuthirun, P.; Kumvongsa, C.; Burakorn, A.; Changkanarth, P.; Yoksan, S. Effect of density of state on isotope effect exponent of two-band superconductors. Phys. C Supercond. 2005, 425, 149–154. [Google Scholar] [CrossRef]
- Chanpoom, T.; Ruangrungrote, S.; Udomsamuthirun, P. The Investigation of an Anomalous Isotope Exponent of Superconductors Under High Pressure in Weak-Coupling Limit. J. Low Temp. Phys. 2022, 207, 264–277. [Google Scholar] [CrossRef]
- Krzyzosiak, M.; Gonczarek, R.; Gonczarek, A.; Jacak, L. Simple analytical model of the effect of high pressure on the critical temperature and other thermodynamic properties of superconductors. Sci. Rep. 2018, 8, 7709. [Google Scholar] [CrossRef]
- Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809. [Google Scholar] [CrossRef]
- Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. 1978, 83, 1257–1268. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA 1944, 30, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Platas, J.; Alvaro, M.; Nestola, F.; Angel, R. EosFit7-GUI: A new graphical user interface for equation of state calculations analyses and teaching. J. Appl. Crystallogr. 2016, 49, 1377–1382. [Google Scholar] [CrossRef]
- McMillan, W.L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968, 167, 331–344. [Google Scholar] [CrossRef]
- Allen, P.B.; Dynes, R.C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 1975, 12, 905–922. [Google Scholar] [CrossRef]
- Kittel, C.; McEuen, P. Introduction to Solid State Physics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Fetter, A.; Walecka, J. Quantum Theory of Many-Particle System, International ed.; MaGraw-Hill Inc.: New York, NY, USA, 1995. [Google Scholar]
- Buckel, W. Superconductivity: Fundamentals and Application, 2nd ed.; VCH Publishers Inc.: New York, NY, USA, 1991. [Google Scholar]
- Kim, H.T. Room-temperature-superconducting Tc driven by electron correlation. Sci. Rep. 2021, 11, 10329. [Google Scholar] [CrossRef]
- Sadovskii, M.V. Superconducting Transition Temperature for Very Strong Coupling in the Antiadiabatic Limit of Eliashberg Equations. JETP Lett. 2021, 113, 581–585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tongkhonburi, P.; Udomsamuthirun, P.; Changjan, A.; Meakniti, S.; Kruaehong, T. The Study on the Critical Temperature and Gap-to-Tc Ratio of Yttrium Hydride Superconductors. Crystals 2024, 14, 158. https://doi.org/10.3390/cryst14020158
Tongkhonburi P, Udomsamuthirun P, Changjan A, Meakniti S, Kruaehong T. The Study on the Critical Temperature and Gap-to-Tc Ratio of Yttrium Hydride Superconductors. Crystals. 2024; 14(2):158. https://doi.org/10.3390/cryst14020158
Chicago/Turabian StyleTongkhonburi, Pongkan, Pongkaew Udomsamuthirun, Arpapong Changjan, Suppanyou Meakniti, and Thitipong Kruaehong. 2024. "The Study on the Critical Temperature and Gap-to-Tc Ratio of Yttrium Hydride Superconductors" Crystals 14, no. 2: 158. https://doi.org/10.3390/cryst14020158
APA StyleTongkhonburi, P., Udomsamuthirun, P., Changjan, A., Meakniti, S., & Kruaehong, T. (2024). The Study on the Critical Temperature and Gap-to-Tc Ratio of Yttrium Hydride Superconductors. Crystals, 14(2), 158. https://doi.org/10.3390/cryst14020158