Heavy Liquid Separation Method for Enhancement of Trace Asbestos Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sample Preparations
2.2.1. Epoxy Mount
2.2.2. Ball Milling
2.3. Experimental Procedure
2.3.1. Electron Microprobe Analysis (EPMA)
2.3.2. Powder X-ray Diffraction
2.3.3. Heavy Liquid Separation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skinner, H.C.W.; Ross, M.; Frondel, C. Asbestos and Other Fibrous Materials: Mineralogy, Crystal Chemistry, and Health Effects; Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- Virta, R.L. Asbestos: Geology, Mineralogy, Mining, and Uses; U.S. Department of the Interior—U.S. Geological Survey: Washington, DC, USA, 2002. [Google Scholar]
- World Health Organization. Asbestos and Other Natural Mineral Fibres; World Health Organization: Geneva, Switzerland, 1986. [Google Scholar]
- Hopkins, O.B. A Report on the Asbestos, Talc and Soapstone Deposits of Georgia; C.P. Byrd: Athens, GA, USA, 1914. [Google Scholar]
- Chidester, A.H. Talc Resources of the United States; US Government Printing Office: Washington, DC, USA, 1964; Volume 1167. [Google Scholar]
- Neathery, T.L. Talc and Anthophyllite Asbestos Deposits in Tallapoosa and Chambers Counties, Alabama; Geological Survey of Alabama: Tuscaloosa, AL, USA, 1968; Volume 90. [Google Scholar]
- Van Gosen, B.S.; Lowers, H.A.; Sutley, S.J.; Gent, C.A. Using the geologic setting of talc deposits as an indicator of amphibole asbestos content. Environ. Geol. 2004, 45, 920–939. [Google Scholar] [CrossRef]
- Atkinson, G.; Rose, D.; Thomas, K.; Jones, D.; Chatfield, E.; Going, J. Collection, Analysis and Characterization of Vermiculite Samples for Fiber Content and Asbestos Contamination: Task 32, Final Report; United States Environmental Protection Agency: Washington, DC, USA, 1982. [Google Scholar]
- McDonald, J.; Harris, J.; Armstrong, B. Cohort mortality study of vermiculite miners exposed to fibrous tremolite: An update. Ann. Occup. Hyg. 2002, 46, 93–94. [Google Scholar]
- Meeker, G.; Bern, A.; Brownfield, I.; Lowers, H.; Sutley, S.; Hoefen, T.; Vance, J. The composition and morphology of amphiboles from the Rainy Creek Complex, near Libby, Montana. Am. Mineral. 2003, 88, 1955–1969. [Google Scholar] [CrossRef]
- McDonald, J.C.; Harris, J.; Armstrong, B. Mortality in a cohort of vermiculite miners exposed to fibrous amphibole in Libby, Montana. Occup. Environ. Med. 2004, 61, 363–366. [Google Scholar] [CrossRef]
- Sanchez, M.S.; Gunter, M.E. Quantification of amphibole content in expanded vermiculite products from Libby, Montana USA using powder X-ray diffraction. Am. Mineral. 2006, 91, 1448–1451. [Google Scholar] [CrossRef]
- Spear, T.M.; Hart, J.F.; Spear, T.E.; Loushin, M.M.; Shaw, N.N.; Elashhab, M.I. The Presence of Asbestos-Contaminated Vermiculite Attic Insulation or Other Asbestos-Containing Materials in Homes and the Potential for Living Space Contamination. J. Environ. Health 2012, 75, 24–29. [Google Scholar]
- Sinclair, W.E. Asbestos: Its Origin, Production, and Utilization; Mining Publications: London, UK, 1959. [Google Scholar]
- Ross, M. Amphiboles and Other Hydrous Pyriboles-Mineralogy: Reviews in Mineralogy; Veblen, D., Ed.; Mineralogical Society of America: Chantilli, VA, USA, 1981; Volume 9A. [Google Scholar]
- Hawthorne, F.C.; Oberti, R.; Della Ventura, G.; Mottana, A. Amphiboles: Crystal chemistry. Amphiboles Cryst. Chem. Occurr. Health Issues 2007, 67, 1–54. [Google Scholar]
- Finley, B.L.; Pierce, J.S.; Phelka, A.D.; Adams, R.E.; Paustenbach, D.J.; Thuett, K.A.; Barlow, C.A. Evaluation of tremolite asbestos exposures associated with the use of commercial products. Crit. Rev. Toxicol. 2012, 42, 119–146. [Google Scholar] [CrossRef]
- Gaffney, S.H.; Grespin, M.; Garnick, L.; Drechsel, D.A.; Hazan, R.; Paustenbach, D.J.; Simmons, B.D. Anthophyllite asbestos: State of the science review: Anthophyllite: State of the science. J. Appl. Toxicol. 2017, 37, 38–49. [Google Scholar] [CrossRef]
- Wylie, A.G. Fiber length and aspect ratio of some selected asbestos samples. Ann. N. Y. Acad. Sci. 1979, 330, 605–610. [Google Scholar] [CrossRef]
- Crane, D.T. Polarized Light Microscopy of Asbestos; OSHA Salt Lake Technical Center: Salt Lake City, UT, USA, 1992. [Google Scholar]
- NIOSH 7400; Asbestos and Other Fibers by PCM: Issue 3 (14 June 2019). National Institute for Occupational Safety and Health: Washington, DC, USA, 2019; 40p. Available online: https://www.cdc.gov/niosh/nmam/pdf/7400.pdf (accessed on 19 January 2024).
- Block, L.; Beckers, D.; Ferret, J.; Meeker, G.P.; Miller, A.; Osterberg, R.E.; Patil, D.M.; Pier, J.W.; Riseman, S.; Rutstein, M.S.; et al. Modernization of Asbestos Testing in USP Talca. Pharmacopeial Forum 2014, 40, 1–13. [Google Scholar]
- Cosmetic, Toiletry and Fragrance Association (CTFA). Method J 4-1. Asbestiform Amphibole Minerals in Cosmetic Talc. In Compendium of Cosmetic Ingredient Composition; Specifications: Washington, DC, USA, 1976; (Revised in 1990); pp. 66–82. Available online: https://www.cir-safety.org/sites/default/files/032013_web_w2.pdf (accessed on 19 January 2024).
- NIOSH 7402; Asbestos by TEM: Issue 2 (15 August 1994). National Institute for Occupational Safety and Health: Washington, DC, USA, 1994; pp. 2–7. Available online: https://www.cdc.gov/niosh/docs/2003-154/pdfs/7402.pdf (accessed on 19 January 2024).
- NIOSH 7402; Asbestos by TEM: Issue 3 (1 August 2002). National Institute for Occupational Safety and Health: Washington, DC, USA, 2002; pp. 2–8. Available online: https://www.cdc.gov/niosh/nmam/pdf/7402.pdf (accessed on 19 January 2024).
- Rinaudo, C.; Belluso, E.; Gastaldi, D. Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral. Mag. 2004, 68, 455–465. [Google Scholar] [CrossRef]
- Nishimura, T.; Alexandrov, M.; Ishida, T.; Hirota, R.; Ikeda, T.; Sekiguchi, K.; Kuroda, A. Differential Counting of Asbestos Using Phase Contrast and Fluorescence Microscopy. Ann. Occup. Hyg. 2016, 60, 1104–1115. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Zaremba, T.; Piotrowski, J.; Adamek, J. Thermal decomposition of different types of asbestos. J. Therm. Anal. Calorim. 2012, 109, 693–704. [Google Scholar] [CrossRef]
- Bloise, A.; Kusiorowski, R.; Gualtieri, A.F. The effect of grinding on tremolite asbestos and anthophyllite asbestos. Minerals 2018, 8, 274. [Google Scholar] [CrossRef]
- Bloise, A. On the thermal breakdown of tremolite: A new method for distinguishing between asbestos and non-asbestos tremolite samples. J. Mater. Sci. 2023, 58, 8779–8795. [Google Scholar] [CrossRef]
- Interagency Working Group on Asbestos in Consumer Products (IWGACP). White Paper: IWGACP Scientific Opinions on Testing Methods for Asbestos in Cosmetic Products Containing Talc (December 2021). Available online: https://www.regulations.gov/document/FDA-2020-N-0025-0053 (accessed on 19 January 2024).
- ISO 22262-2:2014; Air Quality—Bulk Materials—Part 2: Quantitative Determination of Asbestos by Gravimetric and Microscopical Methods. International Organization for Standardization: Geneva, Switzerland, 2014. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:22262:-2:ed-1:v1:en (accessed on 19 January 2024).
- Blount, A. Detection and quantification of asbestos and other trace minerals in powdered industrial-mineral samples. AIME Process Miner. 1990, 9, 557–570. [Google Scholar]
- Blount, A. Amphibole content of cosmetic and pharmaceutical talcs. Environ. Health Perspect. 1991, 94, 225–230. [Google Scholar]
- Grosz, A.E.; Berquist, C., Jr.; Fischler, C. A Procedure for Assessing Heavy Mineral Resources Potential; William & Mary College: Charlottesville, VA, USA, 1990. [Google Scholar]
- Skipp, G.; Brownfield, I.K. Improved Density Gradient Separation Techniques Using Sodium Polytungstate and a Comparison to the Use of Other Heavy Liquids; US Department of the Interior—US Geological Survey: Denver, CO, USA, 1993. [Google Scholar]
- Chisholm, E.-K.I.; Sircombe, K.; DiBugnara, D. Handbook of Geochronology Mineral Separation Laboratory Techniques; Geoscience Australia: Sydney, Australia, 2014. [Google Scholar]
- Bagioni, R.P. Separation of chrysotile asbestos from minerals that interfere with its infrared analysis. Environ. Sci. Technol. 1975, 9, 262–263. [Google Scholar] [CrossRef]
- Haartz, J.; Lange, B.; Draftz, R.; Scholl, R. Selection and characterization of fibrous and nonfibrous amphiboles for analytical methods development. In Proceedings of the Workshop on Asbestos: Definitions and Measurement Methods, Gaithersburg, MD, USA, 18–20 July 1978; pp. 295–312. [Google Scholar]
- Carbone, M.; Kratzke, R.A.; Testa, J.R. The pathogenesis of mesothelioma. Semin. Oncol. 2002, 29, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Testa, J.R.; Carbone, M. Mesothelioma epidemiology, carcinogenesis, and pathogenesis. Curr. Treat. Options Oncol. 2008, 9, 147–157. [Google Scholar] [CrossRef]
- Carbone, M.; Adusumilli, P.S.; Alexander, H.R., Jr.; Baas, P.; Bardelli, F.; Bononi, A.; Bueno, R.; Felley-Bosco, E.; Galateau-Salle, F.; Jablons, D.; et al. Mesothelioma: Scientific clues for prevention, diagnosis, and therapy. CA Cancer J. Clin. 2019, 69, 402–429. [Google Scholar] [CrossRef]
- Gaudino, G.; Xue, J.; Yang, H. How asbestos and other fibers cause mesothelioma. Transl. Lung Cancer Res. 2020, 9, S39. [Google Scholar] [CrossRef]
- Xue, J.; Patergnani, S.; Giorgi, C.; Suarez, J.; Goto, K.; Bononi, A.; Tanji, M.; Novelli, F.; Pastorino, S.; Xu, R.; et al. Asbestos induces mesothelial cell transformation via HMGB1-driven autophagy. Proc. Natl. Acad. Sci. USA 2020, 117, 25543–25552. [Google Scholar] [CrossRef]
- Norman, L., Jr.; Stewart, R. Mines and mineral resources of Inyo County, California. Calif. J. Mines Geol. 1951, 47, 17–23. [Google Scholar]
- Bowles, O. The Asbestos Industry; US Government Printing Office: Washington, DC, USA, 1955; Volume 552. [Google Scholar]
- Phillips, R. The recalculation of amphibole analyses. Mineral. Mag. J. Mineral. Soc. 1963, 33, 701–711. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Gates-Rector, S.; Blanton, T. The powder diffraction file: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Sax, N.I.; Bruce, R.D.; Durham, W.F. Dangerous Properties of Industrial Materials; Van Nostrand Reinhold: New York, NY, USA, 1975; Volume 21. [Google Scholar]
- Torresan, M.E. The Use of Sodium Polytungstate in Heavy Mineral Separations; 2331-1258; U.S. Department of the Interior—U.S. Geological Survey: Menlo Park, CA, USA, 1987. [Google Scholar]
- Krukowski, S.T. Sodium metatungstate: A new heavy-mineral separation medium for the extraction of conodonts from insoluble residues. J. Paleontol. 1988, 62, 314–316. [Google Scholar] [CrossRef]
- Munsterman, D.; Kerstholt, S. Sodium polytungstate, a new non-toxic alternative to bromoform in heavy liquid separation. Rev. Palaeobot. Palynol. 1996, 91, 417–422. [Google Scholar] [CrossRef]
- Bruker. DIFFRAC.EVA: Software to Evaluate X-ray Diffraction Data. 2018 Version 4.3. Available online: https://www.bruker.com/eva (accessed on 19 January 2024).
Method No. | Process | Sink Material Weight after HL (g) |
---|---|---|
1 | Mixed samples + SPT + sonication + vacuum + centrifugation | Cannot calculate |
2 | Mixed samples + sonication with methanal + SPT + | 0.0959 |
3 | Mixed samples + | 0.1080 |
4 | Mixed samples + sonication with methanal + SPT + vacuum + centrifugation | 0.0779 |
5 | Mixed samples + | 0.1120 |
Pure Tremolite | Pure Anthophyllite | ||||||||
---|---|---|---|---|---|---|---|---|---|
Reproduced | |||||||||
Wt% | Before (g) | After (g) | Weight Loss (%) | Wt% | Before (g) | After (g) | Weight Loss (%) | After (g) | Weight Loss (%) |
10 | 0.1400 | 0.0918 | 34.40 | 10 | 0.1200 | 0.0911 | 24.11 | 0.0844 | 29.69 |
5 | 0.0700 | 0.0635 | 9.28 | 5 | 0.0600 | 0.0259 | 56.83 | 0.0418 | 30.30 |
1 | 0.0140 | 0.0114 | 18.29 | 1 | 0.0120 | 0.0076 | 37.00 | 0.0118 | 1.50 |
0.5 | 0.0070 | 0.0065 | 7.43 | 0.5 | 0.0060 | 0.0049 | 18.33 | 0.0059 | 2.00 |
0.1 | 0.0014 | 0.0013 | 8.57 | 0.1 | 0.0012 | 0.0009 | 24.17 | 0.0008 | 30.00 |
0.05 | 0.0007 | 0.0006 | 8.57 | 0.05 | 0.0006 | 0.0005 | 6.67 | 0.0005 | 20.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chornkrathok, S.; Dera, P.; Nguyen, P.Q.H.; Downs, R.T. Heavy Liquid Separation Method for Enhancement of Trace Asbestos Detection. Crystals 2024, 14, 127. https://doi.org/10.3390/cryst14020127
Chornkrathok S, Dera P, Nguyen PQH, Downs RT. Heavy Liquid Separation Method for Enhancement of Trace Asbestos Detection. Crystals. 2024; 14(2):127. https://doi.org/10.3390/cryst14020127
Chicago/Turabian StyleChornkrathok, Sasithorn, Przemyslaw Dera, Phuong Q. H. Nguyen, and Robert T. Downs. 2024. "Heavy Liquid Separation Method for Enhancement of Trace Asbestos Detection" Crystals 14, no. 2: 127. https://doi.org/10.3390/cryst14020127
APA StyleChornkrathok, S., Dera, P., Nguyen, P. Q. H., & Downs, R. T. (2024). Heavy Liquid Separation Method for Enhancement of Trace Asbestos Detection. Crystals, 14(2), 127. https://doi.org/10.3390/cryst14020127