Heavy Liquid Separation Method for Enhancement of Trace Asbestos Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sample Preparations
2.2.1. Epoxy Mount
2.2.2. Ball Milling
2.3. Experimental Procedure
2.3.1. Electron Microprobe Analysis (EPMA)
2.3.2. Powder X-ray Diffraction
2.3.3. Heavy Liquid Separation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skinner, H.C.W.; Ross, M.; Frondel, C. Asbestos and Other Fibrous Materials: Mineralogy, Crystal Chemistry, and Health Effects; Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- Virta, R.L. Asbestos: Geology, Mineralogy, Mining, and Uses; U.S. Department of the Interior—U.S. Geological Survey: Washington, DC, USA, 2002. [Google Scholar]
- World Health Organization. Asbestos and Other Natural Mineral Fibres; World Health Organization: Geneva, Switzerland, 1986. [Google Scholar]
- Hopkins, O.B. A Report on the Asbestos, Talc and Soapstone Deposits of Georgia; C.P. Byrd: Athens, GA, USA, 1914. [Google Scholar]
- Chidester, A.H. Talc Resources of the United States; US Government Printing Office: Washington, DC, USA, 1964; Volume 1167. [Google Scholar]
- Neathery, T.L. Talc and Anthophyllite Asbestos Deposits in Tallapoosa and Chambers Counties, Alabama; Geological Survey of Alabama: Tuscaloosa, AL, USA, 1968; Volume 90. [Google Scholar]
- Van Gosen, B.S.; Lowers, H.A.; Sutley, S.J.; Gent, C.A. Using the geologic setting of talc deposits as an indicator of amphibole asbestos content. Environ. Geol. 2004, 45, 920–939. [Google Scholar] [CrossRef]
- Atkinson, G.; Rose, D.; Thomas, K.; Jones, D.; Chatfield, E.; Going, J. Collection, Analysis and Characterization of Vermiculite Samples for Fiber Content and Asbestos Contamination: Task 32, Final Report; United States Environmental Protection Agency: Washington, DC, USA, 1982. [Google Scholar]
- McDonald, J.; Harris, J.; Armstrong, B. Cohort mortality study of vermiculite miners exposed to fibrous tremolite: An update. Ann. Occup. Hyg. 2002, 46, 93–94. [Google Scholar]
- Meeker, G.; Bern, A.; Brownfield, I.; Lowers, H.; Sutley, S.; Hoefen, T.; Vance, J. The composition and morphology of amphiboles from the Rainy Creek Complex, near Libby, Montana. Am. Mineral. 2003, 88, 1955–1969. [Google Scholar] [CrossRef]
- McDonald, J.C.; Harris, J.; Armstrong, B. Mortality in a cohort of vermiculite miners exposed to fibrous amphibole in Libby, Montana. Occup. Environ. Med. 2004, 61, 363–366. [Google Scholar] [CrossRef]
- Sanchez, M.S.; Gunter, M.E. Quantification of amphibole content in expanded vermiculite products from Libby, Montana USA using powder X-ray diffraction. Am. Mineral. 2006, 91, 1448–1451. [Google Scholar] [CrossRef]
- Spear, T.M.; Hart, J.F.; Spear, T.E.; Loushin, M.M.; Shaw, N.N.; Elashhab, M.I. The Presence of Asbestos-Contaminated Vermiculite Attic Insulation or Other Asbestos-Containing Materials in Homes and the Potential for Living Space Contamination. J. Environ. Health 2012, 75, 24–29. [Google Scholar]
- Sinclair, W.E. Asbestos: Its Origin, Production, and Utilization; Mining Publications: London, UK, 1959. [Google Scholar]
- Ross, M. Amphiboles and Other Hydrous Pyriboles-Mineralogy: Reviews in Mineralogy; Veblen, D., Ed.; Mineralogical Society of America: Chantilli, VA, USA, 1981; Volume 9A. [Google Scholar]
- Hawthorne, F.C.; Oberti, R.; Della Ventura, G.; Mottana, A. Amphiboles: Crystal chemistry. Amphiboles Cryst. Chem. Occurr. Health Issues 2007, 67, 1–54. [Google Scholar]
- Finley, B.L.; Pierce, J.S.; Phelka, A.D.; Adams, R.E.; Paustenbach, D.J.; Thuett, K.A.; Barlow, C.A. Evaluation of tremolite asbestos exposures associated with the use of commercial products. Crit. Rev. Toxicol. 2012, 42, 119–146. [Google Scholar] [CrossRef]
- Gaffney, S.H.; Grespin, M.; Garnick, L.; Drechsel, D.A.; Hazan, R.; Paustenbach, D.J.; Simmons, B.D. Anthophyllite asbestos: State of the science review: Anthophyllite: State of the science. J. Appl. Toxicol. 2017, 37, 38–49. [Google Scholar] [CrossRef]
- Wylie, A.G. Fiber length and aspect ratio of some selected asbestos samples. Ann. N. Y. Acad. Sci. 1979, 330, 605–610. [Google Scholar] [CrossRef]
- Crane, D.T. Polarized Light Microscopy of Asbestos; OSHA Salt Lake Technical Center: Salt Lake City, UT, USA, 1992. [Google Scholar]
- NIOSH 7400; Asbestos and Other Fibers by PCM: Issue 3 (14 June 2019). National Institute for Occupational Safety and Health: Washington, DC, USA, 2019; 40p. Available online: https://www.cdc.gov/niosh/nmam/pdf/7400.pdf (accessed on 19 January 2024).
- Block, L.; Beckers, D.; Ferret, J.; Meeker, G.P.; Miller, A.; Osterberg, R.E.; Patil, D.M.; Pier, J.W.; Riseman, S.; Rutstein, M.S.; et al. Modernization of Asbestos Testing in USP Talca. Pharmacopeial Forum 2014, 40, 1–13. [Google Scholar]
- Cosmetic, Toiletry and Fragrance Association (CTFA). Method J 4-1. Asbestiform Amphibole Minerals in Cosmetic Talc. In Compendium of Cosmetic Ingredient Composition; Specifications: Washington, DC, USA, 1976; (Revised in 1990); pp. 66–82. Available online: https://www.cir-safety.org/sites/default/files/032013_web_w2.pdf (accessed on 19 January 2024).
- NIOSH 7402; Asbestos by TEM: Issue 2 (15 August 1994). National Institute for Occupational Safety and Health: Washington, DC, USA, 1994; pp. 2–7. Available online: https://www.cdc.gov/niosh/docs/2003-154/pdfs/7402.pdf (accessed on 19 January 2024).
- NIOSH 7402; Asbestos by TEM: Issue 3 (1 August 2002). National Institute for Occupational Safety and Health: Washington, DC, USA, 2002; pp. 2–8. Available online: https://www.cdc.gov/niosh/nmam/pdf/7402.pdf (accessed on 19 January 2024).
- Rinaudo, C.; Belluso, E.; Gastaldi, D. Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral. Mag. 2004, 68, 455–465. [Google Scholar] [CrossRef]
- Nishimura, T.; Alexandrov, M.; Ishida, T.; Hirota, R.; Ikeda, T.; Sekiguchi, K.; Kuroda, A. Differential Counting of Asbestos Using Phase Contrast and Fluorescence Microscopy. Ann. Occup. Hyg. 2016, 60, 1104–1115. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Zaremba, T.; Piotrowski, J.; Adamek, J. Thermal decomposition of different types of asbestos. J. Therm. Anal. Calorim. 2012, 109, 693–704. [Google Scholar] [CrossRef]
- Bloise, A.; Kusiorowski, R.; Gualtieri, A.F. The effect of grinding on tremolite asbestos and anthophyllite asbestos. Minerals 2018, 8, 274. [Google Scholar] [CrossRef]
- Bloise, A. On the thermal breakdown of tremolite: A new method for distinguishing between asbestos and non-asbestos tremolite samples. J. Mater. Sci. 2023, 58, 8779–8795. [Google Scholar] [CrossRef]
- Interagency Working Group on Asbestos in Consumer Products (IWGACP). White Paper: IWGACP Scientific Opinions on Testing Methods for Asbestos in Cosmetic Products Containing Talc (December 2021). Available online: https://www.regulations.gov/document/FDA-2020-N-0025-0053 (accessed on 19 January 2024).
- ISO 22262-2:2014; Air Quality—Bulk Materials—Part 2: Quantitative Determination of Asbestos by Gravimetric and Microscopical Methods. International Organization for Standardization: Geneva, Switzerland, 2014. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:22262:-2:ed-1:v1:en (accessed on 19 January 2024).
- Blount, A. Detection and quantification of asbestos and other trace minerals in powdered industrial-mineral samples. AIME Process Miner. 1990, 9, 557–570. [Google Scholar]
- Blount, A. Amphibole content of cosmetic and pharmaceutical talcs. Environ. Health Perspect. 1991, 94, 225–230. [Google Scholar]
- Grosz, A.E.; Berquist, C., Jr.; Fischler, C. A Procedure for Assessing Heavy Mineral Resources Potential; William & Mary College: Charlottesville, VA, USA, 1990. [Google Scholar]
- Skipp, G.; Brownfield, I.K. Improved Density Gradient Separation Techniques Using Sodium Polytungstate and a Comparison to the Use of Other Heavy Liquids; US Department of the Interior—US Geological Survey: Denver, CO, USA, 1993. [Google Scholar]
- Chisholm, E.-K.I.; Sircombe, K.; DiBugnara, D. Handbook of Geochronology Mineral Separation Laboratory Techniques; Geoscience Australia: Sydney, Australia, 2014. [Google Scholar]
- Bagioni, R.P. Separation of chrysotile asbestos from minerals that interfere with its infrared analysis. Environ. Sci. Technol. 1975, 9, 262–263. [Google Scholar] [CrossRef]
- Haartz, J.; Lange, B.; Draftz, R.; Scholl, R. Selection and characterization of fibrous and nonfibrous amphiboles for analytical methods development. In Proceedings of the Workshop on Asbestos: Definitions and Measurement Methods, Gaithersburg, MD, USA, 18–20 July 1978; pp. 295–312. [Google Scholar]
- Carbone, M.; Kratzke, R.A.; Testa, J.R. The pathogenesis of mesothelioma. Semin. Oncol. 2002, 29, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Testa, J.R.; Carbone, M. Mesothelioma epidemiology, carcinogenesis, and pathogenesis. Curr. Treat. Options Oncol. 2008, 9, 147–157. [Google Scholar] [CrossRef]
- Carbone, M.; Adusumilli, P.S.; Alexander, H.R., Jr.; Baas, P.; Bardelli, F.; Bononi, A.; Bueno, R.; Felley-Bosco, E.; Galateau-Salle, F.; Jablons, D.; et al. Mesothelioma: Scientific clues for prevention, diagnosis, and therapy. CA Cancer J. Clin. 2019, 69, 402–429. [Google Scholar] [CrossRef]
- Gaudino, G.; Xue, J.; Yang, H. How asbestos and other fibers cause mesothelioma. Transl. Lung Cancer Res. 2020, 9, S39. [Google Scholar] [CrossRef]
- Xue, J.; Patergnani, S.; Giorgi, C.; Suarez, J.; Goto, K.; Bononi, A.; Tanji, M.; Novelli, F.; Pastorino, S.; Xu, R.; et al. Asbestos induces mesothelial cell transformation via HMGB1-driven autophagy. Proc. Natl. Acad. Sci. USA 2020, 117, 25543–25552. [Google Scholar] [CrossRef]
- Norman, L., Jr.; Stewart, R. Mines and mineral resources of Inyo County, California. Calif. J. Mines Geol. 1951, 47, 17–23. [Google Scholar]
- Bowles, O. The Asbestos Industry; US Government Printing Office: Washington, DC, USA, 1955; Volume 552. [Google Scholar]
- Phillips, R. The recalculation of amphibole analyses. Mineral. Mag. J. Mineral. Soc. 1963, 33, 701–711. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Gates-Rector, S.; Blanton, T. The powder diffraction file: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Sax, N.I.; Bruce, R.D.; Durham, W.F. Dangerous Properties of Industrial Materials; Van Nostrand Reinhold: New York, NY, USA, 1975; Volume 21. [Google Scholar]
- Torresan, M.E. The Use of Sodium Polytungstate in Heavy Mineral Separations; 2331-1258; U.S. Department of the Interior—U.S. Geological Survey: Menlo Park, CA, USA, 1987. [Google Scholar]
- Krukowski, S.T. Sodium metatungstate: A new heavy-mineral separation medium for the extraction of conodonts from insoluble residues. J. Paleontol. 1988, 62, 314–316. [Google Scholar] [CrossRef]
- Munsterman, D.; Kerstholt, S. Sodium polytungstate, a new non-toxic alternative to bromoform in heavy liquid separation. Rev. Palaeobot. Palynol. 1996, 91, 417–422. [Google Scholar] [CrossRef]
- Bruker. DIFFRAC.EVA: Software to Evaluate X-ray Diffraction Data. 2018 Version 4.3. Available online: https://www.bruker.com/eva (accessed on 19 January 2024).
Method No. | Process | Sink Material Weight after HL (g) |
---|---|---|
1 | Mixed samples + SPT + sonication + vacuum + centrifugation | Cannot calculate |
2 | Mixed samples + sonication with methanal + SPT + | 0.0959 |
3 | Mixed samples + | 0.1080 |
4 | Mixed samples + sonication with methanal + SPT + vacuum + centrifugation | 0.0779 |
5 | Mixed samples + | 0.1120 |
Pure Tremolite | Pure Anthophyllite | ||||||||
---|---|---|---|---|---|---|---|---|---|
Reproduced | |||||||||
Wt% | Before (g) | After (g) | Weight Loss (%) | Wt% | Before (g) | After (g) | Weight Loss (%) | After (g) | Weight Loss (%) |
10 | 0.1400 | 0.0918 | 34.40 | 10 | 0.1200 | 0.0911 | 24.11 | 0.0844 | 29.69 |
5 | 0.0700 | 0.0635 | 9.28 | 5 | 0.0600 | 0.0259 | 56.83 | 0.0418 | 30.30 |
1 | 0.0140 | 0.0114 | 18.29 | 1 | 0.0120 | 0.0076 | 37.00 | 0.0118 | 1.50 |
0.5 | 0.0070 | 0.0065 | 7.43 | 0.5 | 0.0060 | 0.0049 | 18.33 | 0.0059 | 2.00 |
0.1 | 0.0014 | 0.0013 | 8.57 | 0.1 | 0.0012 | 0.0009 | 24.17 | 0.0008 | 30.00 |
0.05 | 0.0007 | 0.0006 | 8.57 | 0.05 | 0.0006 | 0.0005 | 6.67 | 0.0005 | 20.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chornkrathok, S.; Dera, P.; Nguyen, P.Q.H.; Downs, R.T. Heavy Liquid Separation Method for Enhancement of Trace Asbestos Detection. Crystals 2024, 14, 127. https://doi.org/10.3390/cryst14020127
Chornkrathok S, Dera P, Nguyen PQH, Downs RT. Heavy Liquid Separation Method for Enhancement of Trace Asbestos Detection. Crystals. 2024; 14(2):127. https://doi.org/10.3390/cryst14020127
Chicago/Turabian StyleChornkrathok, Sasithorn, Przemyslaw Dera, Phuong Q. H. Nguyen, and Robert T. Downs. 2024. "Heavy Liquid Separation Method for Enhancement of Trace Asbestos Detection" Crystals 14, no. 2: 127. https://doi.org/10.3390/cryst14020127
APA StyleChornkrathok, S., Dera, P., Nguyen, P. Q. H., & Downs, R. T. (2024). Heavy Liquid Separation Method for Enhancement of Trace Asbestos Detection. Crystals, 14(2), 127. https://doi.org/10.3390/cryst14020127