Nanoporous Copper Films: How to Grow Porous Films by Magnetron Sputter Deposition
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion on the Growth Mechanism for Porous Metals
4.1. Insight from Known Zn and Mg Systems
4.2. Proposed Mechanism for Cu
4.3. A General Blueprint for Porous Growth of Metal Films
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hung, C.M.; Van Duy, L.; Thanh Le, D.T.; Nguyen, H.; Van Duy, N.; Hoa, N.D. ZnO Coral-like Nanoplates Decorated with Pd Nanoparticles for Enhanced VOC Gas Sensing. J. Sci. Adv. Mater. Devices 2021, 6, 453–461. [Google Scholar] [CrossRef]
- Ramírez-González, F.; García-Salgado, G.; Rosendo, E.; Díaz, T.; Nieto-Caballero, F.; Coyopol, A.; Romano, R.; Luna, A.; Monfil, K.; Gastellou, E. Porous Silicon Gas Sensors: The Role of the Layer Thickness and the Silicon Conductivity. Sensors 2020, 20, 4942. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, E.; Montazerian, H.; Haghniaz, R.; Rashidi, A.; Ahadian, S.; Sheikhi, A.; Chen, J.; Khademhosseini, A.; Milani, A.S.; Hoorfar, M.; et al. 3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. ACS Nano 2020, 14, 1520–1532. [Google Scholar] [CrossRef]
- Campbell, M.G.; Dincă, M. Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors 2017, 17, 1108. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Chen, J.; Gomard, G.; Hölscher, H.; Lemmer, U. Recent Progress in Light-Scattering Porous Polymers and Their Applications. Adv. Opt. Mater. 2023, 11, 2203134. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Shao, Y.; Wu, Y.; Sun, C.; Huo, Q.; Zhang, B.; Hu, H.; Hao, X. One-Step Fabrication of Porous GaN Crystal Membrane and Its Application in Energy Storage. Sci. Rep. 2017, 7, srep44063. [Google Scholar] [CrossRef]
- Feng, D.; Lei, T.; Lukatskaya, M.R.; Park, J.; Huang, Z.; Lee, M.; Shaw, L.; Chen, S.; Yakovenko, A.A.; Kulkarni, A.; et al. Robust and Conductive Two-Dimensional Metal-Organic Frameworks with Exceptionally High Volumetric and Areal Capacitance. Nat. Energy 2018, 3, 30–36. [Google Scholar] [CrossRef]
- Ahmad, S.; Siddiqi, W.A.; Ahmad, S. Sustainable Nanocomposite Porous Absorbent and Membrane Sieves: Definition, Classification, History, Properties, Synthesis, Applications, and Future Prospects. J. Environ. Chem. Eng. 2023, 11, 109367. [Google Scholar] [CrossRef]
- Wang, C.; Wang, W. Advances in Porous Organic Catalysis. Acta Chim. Sin. 2015, 73, 498–529. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Zhang, R.; Jiao, L.; Jiang, H.L. Metal–Organic Framework-Derived Porous Materials for Catalysis. Coord. Chem. Rev. 2018, 362, 1–23. [Google Scholar] [CrossRef]
- Du, H.; Lu, D.; Qi, J.; Shen, Y.; Yin, L.; Wang, Y.; Zheng, Z.; Xiong, T. Heat Dissipation Performance of Porous Copper with Elongated Cylindrical Pores. J. Mater. Sci. Technol. 2014, 30, 934–938. [Google Scholar] [CrossRef]
- Chen, M.; Pang, D.; Yan, H. Highly Solar Reflectance and Infrared Transparent Porous Coating for Non-Contact Heat Dissipations. iScience 2022, 25, 104726. [Google Scholar] [CrossRef]
- Lo, T.Y.; Cui, H.Z. Effect of Porous Lightweight Aggregate on Strength of Concrete. Mater. Lett. 2004, 58, 916–919. [Google Scholar] [CrossRef]
- Sun, Y.; Chu, Y.; Wu, W.; Xiao, H. Nanocellulose-Based Lightweight Porous Materials: A Review. Carbohydr. Polym. 2021, 255, 117489. [Google Scholar] [CrossRef]
- Xu, H.; Wu, P. New Progress in Zeolite Synthesis and Catalysis. Natl. Sci. Rev. 2022, 9, nwac045. [Google Scholar] [CrossRef]
- Xie, L.S.; Skorupskii, G.; Dincǎ, M. Electrically Conductive Metal-Organic Frameworks. Chem. Rev. 2020, 120, 8536–8580. [Google Scholar] [CrossRef]
- Behymer, N.; Morsi, K. Review: Closed-Cell Metallic Foams Produced via Powder Metallurgy. Metals 2023, 13, 959. [Google Scholar] [CrossRef]
- Ru, J.; Kong, B.; Liu, Y.; Wang, X.; Fan, T.; Zhang, D. Microstructure and Sound Absorption of Porous Copper Prepared by Resin Curing and Foaming Method. Mater. Lett. 2015, 139, 318–321. [Google Scholar] [CrossRef]
- Tian, Q.; Guo, X. Manufacturing Microporous Foam Zinc Materials with High Porosity by Electrodeposition. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 843–846. [Google Scholar] [CrossRef]
- Kern, P.; Veh, J.; Michler, J. New Developments in Through-Mask Electrochemical Micromachining of Titanium. J. Micromechanics Microengineering 2007, 17, 1168–1177. [Google Scholar] [CrossRef]
- Gan, Y.X.; Zhang, Y.; Gan, J.B. Nanoporous Metals Processed by Dealloying and Their Applications. AIMS Mater. Sci. 2018, 5, 1141–1183. [Google Scholar] [CrossRef]
- Li, Y.; Jia, W.Z.; Song, Y.Y.; Xia, X.H. Superhydrophobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template. Chem. Mater. 2007, 19, 5758–5764. [Google Scholar] [CrossRef]
- Niu, J.; Liu, X.; Xia, K.; Xu, L.; Xu, Y.; Fang, X.; Lu, W. Effect of Electrodeposition Parameters on the Morphology of Three-Dimensional Porous Copper Foams. Int. J. Electrochem. Sci. 2015, 10, 7331–7340. [Google Scholar] [CrossRef]
- Wang, N.; Hu, W.C.; Lu, Y.H.; Deng, Y.F.; Wan, X.B.; Zhang, Y.W.; Du, K.; Zhang, L. Role of Surfactants in Construction of Porous Copper Film by Electrodeposition Approach. Trans. Inst. Met. Finish. 2011, 89, 261–267. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Z.; Gao, H.; Niu, J.; Ma, W.; Qin, J.; Peng, Z.; Zhang, Z. A Self-Supported, Three-Dimensional Porous Copper Film as a Current Collector for Advanced Lithium Metal Batteries. J. Mater. Chem. A 2019, 7, 1092–1098. [Google Scholar] [CrossRef]
- Bairagi, S.; Järrendahl, K.; Eriksson, F.; Hultman, L.; Birch, J.; Hsiao, C.L. Glancing Angle Deposition and Growth Mechanism of Inclined AlN Nanostructures Using Reactive Magnetron Sputtering. Coatings 2020, 10, 768. [Google Scholar] [CrossRef]
- Hawkeye, M.M.; Brett, M.J. Glancing Angle Deposition: Fabrication, Properties, and Applications of Micro- and Nanostructured Thin Films. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 2007, 25, 1317. [Google Scholar] [CrossRef]
- Borysiewicz, M.A.; Dynowska, E.; Kolkovsky, V.; Dyczewski, J.; Wielgus, M.; Kamińska, E.; Piotrowska, A. From Porous to Dense Thin ZnO Films through Reactive DC Sputter Deposition onto Si (100) Substrates. Phys. Status Solidi Appl. Mater. Sci. 2012, 209, 2463–2469. [Google Scholar] [CrossRef]
- Masłyk, M.; Borysiewicz, M.A.; Wzorek, M.; Wojciechowski, T.; Kwoka, M.; Kamińska, E. Influence of Absolute Argon and Oxygen Flow Values at a Constant Ratio on the Growth of Zn/ZnO Nanostructures Obtained by DC Reactive Magnetron Sputtering. Appl. Surf. Sci. 2016, 389, 287–293. [Google Scholar] [CrossRef]
- Borysiewicz, M.A.; Barańczyk, P.; Wójcicka, A.; Zawadzki, J.; Wzorek, M.; Zybała, R. Mg Nanostructures with Controlled Dominant C-Plane or m-Plane Facets by DC Magnetron Sputter Depositio. arXiv 2024, arXiv:2402.03298. [Google Scholar] [CrossRef]
- Straumanis, M.E.; Yu, L.S. Lattice Parameters, Densities, Expansion Coefficients and Perfection of Structure of Cu and of Cu–In α Phase. Acta Crystallogr. Sect. A 1969, 25, 676–682. [Google Scholar] [CrossRef]
- Diao, F.; Xiao, X.; Luo, B.; Sun, H.; Ding, F.; Ci, L.; Si, P. Two-Step Fabrication of Nanoporous Copper Films with Tunable Morphology for SERS Application. Appl. Surf. Sci. 2018, 427, 1271–1279. [Google Scholar] [CrossRef]
- Yu, B.; Wang, Y.; Zhang, Y.; Zhang, Z. Self-Supporting Nanoporous Copper Film with High Porosity and Broadband Light Absorption for Efficient Solar Steam Generation. Nano-Micro Lett. 2023, 15, 94. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Ma, S.; Gold, J.I.; Kenis, P.J.A.; Gewirth, A.A. Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO2 Reduction Catalysis. ACS Catal. 2017, 7, 3313–3321. [Google Scholar] [CrossRef]
- Bastos, C.A.P.; Faria, N.; Wills, J.; Malmberg, P.; Scheers, N.; Rees, P.; Powell, J.J. Copper Nanoparticles Have Negligible Direct Antibacterial Impact. NanoImpact 2020, 17, 100192. [Google Scholar] [CrossRef]
- Wu, L.; Ashworth, M.A.; Wilcox, G.D. Zinc Whisker Growth from Electroplated Finishes—A Review. Trans. Inst. Met. Finish. 2015, 93, 1–8. [Google Scholar] [CrossRef]
- Clapeyron, É. Mémoire Sur La Puissance Motrice de La Chaleur. J. l’ Ec. Polytech. 1834, 14, 153–190. [Google Scholar]
- Schmid, M. Vapor Pressure Calculator. Available online: https://www2.iap.tuwien.ac.at/www/surface/vapor_pressure (accessed on 31 October 2024).
- Wulfhekel, W.; Lipkin, N.N.; Kliewer, J.; Rosenfeld, G.; Jorritsma, L.C.; Poelsema, B.; Comsa, G. Conventional and Manipulated Growth of Cu/Cu(111). Surf. Sci. 1996, 348, 227–242. [Google Scholar] [CrossRef]
- Narula, M.L.; Tare, V.B.; Worrell, W.L. Diffusivity and Solubility of Oxygen in Solid Copper Using Potentiostatic and Potentiometric Techniques. Metall. Trans. B 1983, 14, 673–677. [Google Scholar] [CrossRef]
- Mahieu, S.; Ghekiere, P.; Depla, D.; De Gryse, R. Biaxial Alignment in Sputter Deposited Thin Films. Thin Solid Films 2006, 515, 1229–1249. [Google Scholar] [CrossRef]
Sample Name | Flow Ratio | Ar Flow (sccm) | O2 Flow (sccm) |
---|---|---|---|
101A | 3 | 0.3 | |
101B | 6 | 0.6 | |
101C | 10:1 | 10 | 1 |
101D | 20 | 2 | |
101E | 30 | 3 | |
102A | 3 | 0.6 | |
102B | 6 | 1.2 | |
102C | 10:2 | 10 | 2 |
102D | 20 | 4 | |
102E | 30 | 6 | |
151A | 4.5 | 0.3 | |
151B | 6 | 0.4 | |
151C | 15:1 | 7.5 | 0.5 |
151D | 9 | 0.6 | |
151E | 10.5 | 0.7 | |
201A | 6 | 0.3 | |
201B | 10 | 0.5 | |
201C | 20:1 | 14 | 0.7 |
201D | 18 | 0.9 | |
201E | 22 | 1.1 | |
251A | 7.5 | 0.3 | |
251B | 12.5 | 0.5 | |
251C | 25:1 | 17.5 | 0.7 |
251D | 22.5 | 0.9 | |
251E | 27.5 | 1.1 |
Temperature (°C) | dCu (Å) | ΔdCu (Å) | Crystallite Size (nm) | Max. Pore Size (nm) |
---|---|---|---|---|
RT | 3.5988 | 0.0161 | <10 | <5 |
50 | 3.6093 | 0.0057 | <10 | 5 |
100 | 3.6050 | 0.0099 | 10 | 10 |
150 | 3.6114 | 0.0035 | 10 | 30 |
200 | 3.6070 | 0.0079 | 20 | 47 |
250 | 3.6148 | 0.0001 | 40 | 50 |
300 | 3.6087 | 0.0062 | 54 | 60 |
400 | 3.6078 | 0.0071 | 90 | 120 |
500 | 3.6054 | 0.0095 | 111 | Open pores |
600 | 3.6107 | 0.0042 | 400 | Open pores |
700 | 3.6084 | 0.0065 | Nonporous | Nonporous |
800 | 3.6139 | 0.0011 | Nonporous | Nonporous |
Element | Temperature (°C) |
---|---|
Zn | −79 |
Mg | −61 |
Yb | 6 |
Pb | 31 |
Mn | 108 |
Ag | 149 |
Sn | 202 |
Al | 219 |
Cu | 226 |
Fe | 314 |
Co | 341 |
Ni | 344 |
Y | 347 |
Ti | 409 |
V | 464 |
Rh | 544 |
Au | 549 |
Pt | 556 |
Zr | 623 |
Hf | 631 |
Mo | 652 |
Ru | 660 |
Ir | 706 |
Nb | 771 |
Ta | 894 |
W | 1016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borysiewicz, M.A.; Barańczyk, P.; Zawadzki, J.; Wzorek, M.; Zybała, R.; Synkiewicz-Musialska, B.; Krzyściak, P. Nanoporous Copper Films: How to Grow Porous Films by Magnetron Sputter Deposition. Crystals 2024, 14, 965. https://doi.org/10.3390/cryst14110965
Borysiewicz MA, Barańczyk P, Zawadzki J, Wzorek M, Zybała R, Synkiewicz-Musialska B, Krzyściak P. Nanoporous Copper Films: How to Grow Porous Films by Magnetron Sputter Deposition. Crystals. 2024; 14(11):965. https://doi.org/10.3390/cryst14110965
Chicago/Turabian StyleBorysiewicz, Michał A., Patrycja Barańczyk, Jakub Zawadzki, Marek Wzorek, Rafał Zybała, Beata Synkiewicz-Musialska, and Paweł Krzyściak. 2024. "Nanoporous Copper Films: How to Grow Porous Films by Magnetron Sputter Deposition" Crystals 14, no. 11: 965. https://doi.org/10.3390/cryst14110965
APA StyleBorysiewicz, M. A., Barańczyk, P., Zawadzki, J., Wzorek, M., Zybała, R., Synkiewicz-Musialska, B., & Krzyściak, P. (2024). Nanoporous Copper Films: How to Grow Porous Films by Magnetron Sputter Deposition. Crystals, 14(11), 965. https://doi.org/10.3390/cryst14110965