Synthesis and Characterization of TiO2 Nanotubes for High-Performance Gas Sensor Applications
Abstract
1. Introduction
2. Preparation of the Titania Nanotubes
3. Characterization
4. The Fabrication and Performance of the Sensing Device
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Öztürk, S.; Kılınç, N.; Öztürk, Z.Z. Fabrication of ZnO nanorods for NO2 sensor applications: Effect of dimensions and electrode position. J. Alloys Compd. 2013, 581, 196–201. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Al Wajih, Y.A.; Al-Rammah, R.; Qamar, M.; Yamani, Z.H. Surface-engineered WO3 thin films for efficient NO2 sensing. Appl. Surf. Sci. 2020, 517, 146235. [Google Scholar] [CrossRef]
- Li, J.; Yang, M.; Guo, J.; Zhang, X.; Xu, Y.; Cheng, X.; Huo, L. Construction of highly efficient In2O3/SnO2 sensor for real-time NO2 monitoring at near room temperature. Chem. Eng. J. 2024, 498, 155286. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Wu, Q.; Cheng, X.; Wang, Q.; Yang, Y.; Xie, E. SnO2 grains with abundant surface oxygen vacancies for the Ultra-sensitive detection of NO2 at low temperature. Appl. Surf. Sci. 2023, 614, 156223. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Cai, Y.; Zhao, J.; Gao, Z.; Song, Y.Y. The challenges and opportunities for TiO2 nanostructures in gas sensing. ACS Sens. 2024, 9, 1644–1655. [Google Scholar] [CrossRef]
- Ragab, A.H.; Al-Mhyawi, S.R.; Kamran, A.W.; Khan, I.; Khan, I. Highly selective sensing of toxic NOx gases for environmental monitoring using Ru-doped single walled TiO2 nanotube: A density functional theory study. Sens. Actuators A Phys. 2024, 376, 115632. [Google Scholar] [CrossRef]
- Asadpour, M.; Sadeghi, M.; Bani Asadi Bideshki, A. An Ab-Initio Study on Mechanical Properties of Titanium Dioxide Single-Wall Nanotube. Nano 2023, 18, 2350079. [Google Scholar] [CrossRef]
- Fadlallah, M.M.; Eckern, U. Cation mono-and co-doped anatase TiO2 nanotubes: An ab initio investigation of electronic and optical properties. Phys. Status Solidi (B) 2023, 257, 1900217. [Google Scholar] [CrossRef]
- Qamar, M.; Yoon, C.R.; Oh, H.J.; Lee, N.H.; Park, K.; Kim, D.H.; Kim, S.J. Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. Catal. Today 2008, 131, 3–14. [Google Scholar] [CrossRef]
- Kim, J.H.; Zhu, K.; Kim, J.Y.; Frank, A.J. Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics. Electrochim. Acta 2013, 88, 123–128. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Jagminas, A. Synthesis, Characterisation, and Applications of TiO and Other Black Titania Nanostructures Species (Review). Crystals 2024, 14, 647. [Google Scholar] [CrossRef]
- Kusior, A.; Radecka, M.; Zakrzewska, K.; Reszka, A.; Kowalski, B.J. Sensitization of TiO2/SnO2 nanocomposites for gas detection. Sens. Actuators B Chem. 2013, 189, 251–259. [Google Scholar] [CrossRef]
- Gönüllü, Y.; Haidry, A.A.; Saruhan, B. Nanotubular Cr-doped TiO2 for use as high-temperature NO2 gas sensor. Sens. Actuators B Chem. 2015, 217, 78–87. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, C.; Li, Q.; Wu, L.; Jiang, D.; Xia, J. Application of TiO2 to amperometric NOx sensors based on NASICON. Solid State Ion. 2016, 292, 32–37. [Google Scholar] [CrossRef]
- Shwetha, H.R.; Sharath, S.M.; Guruprasad, B.; Rudraswamy, S.B. MEMS based metal oxide semiconductor carbon dioxide gas sensor. Micro Nano Eng. 2022, 16, 100156. [Google Scholar] [CrossRef]
- Fernández-Ramos, M.D.; Capitán-Vallvey, L.F.; Pastrana-Martínez, L.M.; Morales-Torres, S.; Maldonado-Hódar, F.J. Chemoresistive NH3 gas sensor at room temperature based on the carbon gel-TiO2 nanocomposites. Sens. Actuators B Chem. 2022, 368, 132103. [Google Scholar] [CrossRef]
- Ma, S.; Jia, J.; Tian, Y.; Cao, L.; Shi, S.; Li, X.; Wang, X. Improved H2S sensing properties of Ag/TiO2 nanofibers. Ceram. Int. 2016, 42, 2041–2044. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Xie, L.; Li, X.; Lin, D.; Zhu, Z. Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceram. Int. 2020, 46, 15858–15866. [Google Scholar] [CrossRef]
- Arruda, L.B.; Santos, C.M.; Orland, M.O.; Schreiner, W.H.; Lisboa-Filho, P.N. Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceram. Int. 2015, 41, 2884–2891. [Google Scholar] [CrossRef]
- Batool, S.A.; Salman, M.M.; Javed, M.A.; Niaz, A.; Rehman, M.A.U. A review on the fabrication and characterization of titania nanotubes obtained via electrochemical anodization. Surfaces 2022, 5, 456–480. [Google Scholar] [CrossRef]
- Li, H.; Wang, G.; Niu, J.; Wang, E.; Niu, G.; Xie, C. Preparation of TiO2 Nanotube arrays with efficient photocatalytic performance and super hydrophilic properties utilizing anodized voltage method. Results Phys. 2019, 14, 0102499. [Google Scholar] [CrossRef]
- Galstyan, V.; Macak, J.M.; Djenizian, T. Anodic TiO2 nanotubes: A promising material for energy conversion and storage. Appl. Mater. Today 2022, 29, 101613. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Hernandez, A.; Zúñiga-Islas, C.; Mendoza-Cervantes, J.C. A study of the effect of morphology on the optical and electrical properties of TiO2 nanotubes for gas sensing applications. Eur. Phys. J. Appl. Phys. 2020, 90, 30102. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, Y. Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Mater. Sci. 2021, 3, 390–403. [Google Scholar] [CrossRef]
- Kim, W.T.; Kim, I.H.; Choi, W.Y. Fabrication of TiO2 nanotube arrays and their application to a gas sensor. J. Nanosci. Nanotechnol. 2015, 15, 8161–8165. [Google Scholar] [CrossRef]
- Deshmukh, S.B.; Bari, R.H. Nanostructured ZrO2 thin films deposited by spray pyrolysis techniques for ammonia gas sensing application. Int. Lett. Chem. Phys. Astron. 2015, 56, 120–130. [Google Scholar] [CrossRef]
- Hyodo, T.; Okusa, T.; Sakata, W.; Ueda, T.; Shimizu, Y. Impacts of Surface Modification of Pt-Sensing Electrodes with Au on Hydrogen-Sensing Properties and Mechanism of Diode-Type Gas Sensors Based on Anodized Titania. ACS Sens. 2022, 8, 61–70. [Google Scholar] [CrossRef]
- Yu, W.; Chen, D.; Li, J.; Zhang, Z. TiO2-SnS2 Nanoheterostructures for High-Performance Humidity Sensor. Crystals 2023, 13, 482. [Google Scholar] [CrossRef]
- Tong, X.; Shen, W.; Zhang, X.; Corriou, J.P.; Xi, H. Synthesis and density functional theory study of free-standing Fe-doped TiO2 nanotube array film for H2S gas sensing properties at low temperature. J. Alloys Compd. 2020, 832, 155015. [Google Scholar] [CrossRef]
- Zavatski, S.; Neilande, E.; Bandarenka, H.; Popov, A.; Piskunov, S.; Bocharov, D. Density functional theory for doped TiO2: Current research strategies and advancements. Nanotechnology 2024, 35, 192001. [Google Scholar] [CrossRef] [PubMed]
Sensor-Based TiO2 | Response Time (s) | Recovery Time (s) | Sensitivity % |
---|---|---|---|
15 min Anodization | 3.6 ± 0.2 | 34 ± 1.7 | 96.3 ± 4.8 |
30 min Anodization | 15.6 ± 0.8 | 68.2 ± 3.5 | 32.1 ± 1.6 |
60 min Anodization | 65 ± 3.25 | 132.8 ± 6.6 | 25.8 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouktif, B.; Rashid, M.; Hajjaji, A.; Choubani, K.; Alrasheedi, N.H.; Louhichi, B.; Dimassi, W.; Ben Rabha, M. Synthesis and Characterization of TiO2 Nanotubes for High-Performance Gas Sensor Applications. Crystals 2024, 14, 928. https://doi.org/10.3390/cryst14110928
Bouktif B, Rashid M, Hajjaji A, Choubani K, Alrasheedi NH, Louhichi B, Dimassi W, Ben Rabha M. Synthesis and Characterization of TiO2 Nanotubes for High-Performance Gas Sensor Applications. Crystals. 2024; 14(11):928. https://doi.org/10.3390/cryst14110928
Chicago/Turabian StyleBouktif, Belgacem, Marzaini Rashid, Anouar Hajjaji, Karim Choubani, Nashmi H. Alrasheedi, Borhen Louhichi, Wissem Dimassi, and Mohamed Ben Rabha. 2024. "Synthesis and Characterization of TiO2 Nanotubes for High-Performance Gas Sensor Applications" Crystals 14, no. 11: 928. https://doi.org/10.3390/cryst14110928
APA StyleBouktif, B., Rashid, M., Hajjaji, A., Choubani, K., Alrasheedi, N. H., Louhichi, B., Dimassi, W., & Ben Rabha, M. (2024). Synthesis and Characterization of TiO2 Nanotubes for High-Performance Gas Sensor Applications. Crystals, 14(11), 928. https://doi.org/10.3390/cryst14110928