High-Performance Broadband Photodetectors Combining Perovskite and Organic Bulk Heterojunction Bifunctional Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dou, L.; Yang, Y.M.; You, J.; Hong, Z.; Chang, W.H.; Li, G.; Yang, Y. Solution-Processed Hybrid Perovskite Photodetectors with High Detectivity. Nat. Commun. 2014, 5, 5404. [Google Scholar] [CrossRef] [PubMed]
- Kelley, S.O.; Mirkin, C.A.; Walt, D.R.; Ismagilov, R.F.; Toner, M.; Sargent, E.H. Advancing the Speed, Sensitivity and Accuracy of Biomolecular Detection Using Multi-Length-Scale Engineering. Nat. Nanotechnol. 2014, 9, 969–980. [Google Scholar] [CrossRef] [PubMed]
- Armin, A.; Jansen-van Vuuren, R.D.; Kopidakis, N.; Burn, P.L.; Meredith, P. Narrowband Light Detection Via Internal Quantum Efficiency Manipulation of Organic Photodiodes. Nat. Commun. 2015, 6, 6343. [Google Scholar] [CrossRef]
- Li, T.; Li, Q.; Tang, X.; Chen, Z.; Li, Y.; Zhao, H.; Wang, S.; Ding, X.; Zhang, Y.; Yao, J. Environment-Friendly Antisolvent Tert-Amyl Alcohol Modified Hybrid Perovskite Photodetector with High Responsivity. Photonics Res. 2021, 9, 781–791. [Google Scholar] [CrossRef]
- Li, G.; Li, S.; Ahmed, J.; Tian, W.; Li, L. Flexible Perovskite Photodetector with Room-Temperature Self-Healing Capability without External Trigger. InfoMat 2024, e12594. [Google Scholar] [CrossRef]
- Jing, H.; Peng, R.; Ma, R.M.; He, J.; Zhou, Y.; Yang, Z.; Li, C.Y.; Liu, Y.; Guo, X.; Zhu, Y.; et al. Flexible Ultrathin Single-Crystalline Perovskite Photodetector. Nano Lett. 2020, 20, 7144–7151. [Google Scholar] [CrossRef]
- Cheng, W.; Tian, W.; Cao, F.; Li, L. Self-Powered Bifunctional Perovskite Photodetectors with Both Broadband and Narrowband Photoresponse. InfoMat 2022, 4, e12348. [Google Scholar] [CrossRef]
- Huang, R.; Wu, K.; Li, W.; Huang, X.; Zhou, S.; Jiang, S.; Fu, Y.; Zhao, Z.; Mai, W.; Zhao, C. Sunflower-Inspired Light-Tracking System and Spatial Encryption Imaging Based on Linear Flexible Perovskite Photodetector Arrays. Adv. Opt. Mater. 2023, 11, 2301177. [Google Scholar] [CrossRef]
- Li, S.; Xie, X.; Huang, F.; Shu, L.; Liu, L.; Wang, C.; Yang, Y.; Li, R. Recent Application and Progress of Metal Halide Perovskite Photodetector on Flexible Substrates. Chin. J. Chem. 2023, 41, 3689–3702. [Google Scholar] [CrossRef]
- Yu, D.; Cao, F.; Gu, Y.; Han, Z.; Liu, J.; Huang, B.; Xu, X.; Zeng, H. Broadband and Sensitive Two-Dimensional Halide Perovskite Photodetector for Full-Spectrum Underwater Optical Communication. Nano Res. 2020, 14, 1210–1217. [Google Scholar] [CrossRef]
- Waleed, A.; Tavakoli, M.M.; Gu, L.; Wang, Z.; Zhang, D.; Manikandan, A.; Zhang, Q.; Zhang, R.; Chueh, Y.L.; Fan, Z. Lead-Free Perovskite Nanowire Array Photodetectors with Drastically Improved Stability in Nanoengineering Templates. Nano Lett. 2017, 17, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.L.; Liang, Z.; Huo, Z.; Ng, W.K.; Mao, J.; Wong, K.S.; Yin, W.J.; Choy, W.C.H. Low-Bandgap Methylammonium-Rubidium Cation Sn-Rich Perovskites for Efficient Ultraviolet–Visible–near Infrared Photodetectors. Adv. Funct. Mater. 2018, 28, 1706068. [Google Scholar] [CrossRef]
- Chang, Z.; Lu, Z.; Deng, W.; Shi, Y.; Sun, Y.; Zhang, X.; Jie, J. Narrow-Bandgap Sn-Pb Mixed Perovskite Single Crystals for High-Performance near-Infrared Photodetectors. Nanoscale 2023, 15, 5053–5062. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.-H.; Chen, C. Perovskites and Their Constructed near-Infrared Photodetectors. Nano Energy 2024, 128, 109904. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, D.; Zhang, F.; Li, L.; Du, M.; Wang, C.; Yu, Y.; Huang, Q.; Zhang, M.; Li, L.; et al. Highly Sensitive Low-Bandgap Perovskite Photodetectors with Response from Ultraviolet to the near-Infrared Region. Adv. Funct. Mater. 2017, 27, 1703953. [Google Scholar] [CrossRef]
- Cheng, W.; Wu, S.; Lu, J.; Li, G.; Li, S.; Tian, W.; Li, L. Self-Powered Wide-Narrow Bandgap-Laminated Perovskite Photodetector with Bipolar Photoresponse for Secure Optical Communication. Adv. Mater. 2024, 36, 2307534. [Google Scholar] [CrossRef]
- Zhu, H.L.; Lin, H.; Song, Z.; Wang, Z.; Ye, F.; Zhang, H.; Yin, W.J.; Yan, Y.; Choy, W.C.H. Achieving High-Quality Sn-Pb Perovskite Films on Complementary Metal-Oxide-Semiconductor-Compatible Metal/Silicon Substrates for Efficient Imaging Array. ACS Nano 2019, 13, 11800–11808. [Google Scholar] [CrossRef]
- Cao, F.; Chen, J.; Yu, D.; Wang, S.; Xu, X.; Liu, J.; Han, Z.; Huang, B.; Gu, Y.; Choy, K.L.; et al. Bionic Detectors Based on Low-Bandgap Inorganic Perovskite for Selective Nir-I Photon Detection and Imaging. Adv. Mater. 2020, 32, 1905362. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Z.; Zhang, L.; Wu, H.; Wu, G.; Chen, H. Visible-Blind Narrowband near-Infrared Photodetector for Precise Real-Time Photoplethysmography Measurement. ACS. Appl. Mater. Interfaces 2023, 15, 50312–50320. [Google Scholar] [CrossRef]
- Siddik, A.B.; Georgitzikis, E.; Hermans, Y.; Kang, J.; Kim, J.H.; Pejovic, V.; Lieberman, I.; Malinowski, P.E.; Kadashchuk, A.; Genoe, J.; et al. Interface-Engineered Organic near-Infrared Photodetector for Imaging Applications. ACS. App. Mater. Interfaces 2023, 15, 30534–30542. [Google Scholar] [CrossRef]
- Piper, S.K.; Krueger, A.; Koch, S.P.; Mehnert, J.; Habermehl, C.; Steinbrink, J.; Obrig, H.; Schmitz, C.H. A Wearable Multi-Channel Fnirs System for Brain Imaging in Freely Moving Subjects. Neuroimage 2014, 85, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible Organic Photonic Skin. Sci. Adv. 2016, 2, 1501856. [Google Scholar] [CrossRef] [PubMed]
- Shou, K.; Qu, C.; Sun, Y.; Chen, H.; Chen, S.; Zhang, L.; Xu, H.; Hong, X.; Yu, A.; Cheng, Z. Multifunctional Biomedical Imaging in Physiological and Pathological Conditions Using a Nir-II Probe. Adv. Funct. Mater. 2017, 27, 1700995. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Zhao, Q.; Ni, Z.; Zou, Y.; Yang, J.; Wang, L.; Sun, Y.; Guo, Y.; Hu, W.; et al. A Retina-Like Dual Band Organic Photosensor Array for Filter-Free near-Infrared-to-Memory Operations. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Fu, R.; Chen, J.; Yang, W.; Ren, J.; Guo, X.; Ni, Z.; Pi, X.; Li, C.Z.; Li, H.; et al. Perovskite/Organic Bulk-Heterojunction Integrated Ultrasensitive Broadband Photodetectors with High near-Infrared External Quantum Efficiency over 70. Small 2018, 14, 1802349. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Wang, F.; Li, T.; Xu, M.; Wang, H.; Wang, Z.; Zhan, X.; Hu, W.; Shen, L. Ultrafast and Broadband Photodetectors Based on a Perovskite/Organic Bulk Heterojunction for Large-Dynamic-Range Imaging. Light Sci. Appl. 2020, 9, 31. [Google Scholar] [CrossRef]
- Luong, H.M.; Kaiyasuan, C.; Yi, A.; Chae, S.; Kim, B.M.; Panoy, P.; Kim, H.J.; Promarak, V.; Miyata, Y.; Nakayama, H.; et al. Highly Sensitive Resonance-Enhanced Organic Photodetectors for Shortwave Infrared Sensing. ACS Energy Lett. 2024, 9, 1446–1454. [Google Scholar] [CrossRef]
- Sakai, N.; Pathak, S.; Chen, H.-W.; Haghighirad, A.A.; Stranks, S.D.; Miyasaka, T.; Snaith, H.J. The Mechanism of Toluene-Assisted Crystallization of Organic–Inorganic Perovskites for Highly Efficient Solar Cells. J. Mater. Chem. A 2016, 4, 4464–4471. [Google Scholar] [CrossRef]
- Xu, X.; Li, Z.; Zhu, L.; Zheng, H.; Liu, G.; Hayat, T.; Alsaedi, A.; Zhang, X.; Huang, Y.; Pan, X. Large-Grained Formamidinium-Based Films Via a 2d–3d Conversion Mechanism for High-Performance Perovskite Solar Cells without Anti-Solvent. J. Mater. Chem. A 2019, 7, 1341–1348. [Google Scholar] [CrossRef]
- Li, C.; Lu, J.; Zhao, Y.; Sun, L.; Wang, G.; Ma, Y.; Zhang, S.; Zhou, J.; Shen, L.; Huang, W. Highly Sensitive, Fast Response Perovskite Photodetectors Demonstrated in Weak Light Detection Circuit and Visible Light Communication System. Small 2019, 15, e1903599. [Google Scholar] [CrossRef]
- Li, F.; Ma, C.; Wang, H.; Hu, W.; Yu, W.; Sheikh, A.D.; Wu, T. Ambipolar Solution-Processed Hybrid Perovskite Phototransistors. Nat. Commun. 2015, 6, 8238. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wei, Z.; Wei, X.; Lv, Q.; Zhu, W.; Wang, K. Toward High-Performance Photodetectors Based on 2d Materials: Strategy on Methods. Small Methods 2018, 2, 1700349. [Google Scholar] [CrossRef]
- Buscema, M.; Island, J.O.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; van der Zant, H.S.; Castellanos-Gomez, A. Photocurrent Generation with Two-Dimensional Van Der Waals Semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Teng, C.; Zhang, M.; Li, Y.; Xie, D.; Shi, G. A Flexible Uv-Vis-Nir Photodetector Based on a Perovskite/Conjugated-Polymer Composite. Adv. Mater. 2016, 28, 5969–5974. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Lin, Y.; Bao, C.; Bai, Y.; Deng, Y.; Wang, M.; Li, T.; Lu, Y.; Gruverman, A.; Li, W.; et al. Integration of Perovskite and Polymer Photoactive Layers to Produce Ultrafast Response, Ultraviolet-to-near-Infrared, Sensitive Photodetectors. Mater. Horiz. 2017, 4, 242–248. [Google Scholar] [CrossRef]
- Li, W.; Xu, Y.; Meng, X.; Xiao, Z.; Li, R.; Jiang, L.; Cui, L.; Zheng, M.; Liu, C.; Ding, L.; et al. Visible to near-Infrared Photodetection Based on Ternary Organic Heterojunctions. Adv. Funct. Mater. 2019, 29, 1808948. [Google Scholar] [CrossRef]
Active materials | Wavelength (nm) | Responsivity (A/W) | Detectivity (Jones) | Response Time Rise/Fall time | References |
---|---|---|---|---|---|
MAPbI3/PDPP3T | 300–940 | 0.28 (650 nm) 0.14 (820 nm) | 1.45 × 1012 (650 nm) 7.37 × 1011 (820 nm) | 27 ns | [34] |
MAPbI3/ PDPPTDTPT | 350–1050 | 0.16 (525 nm) 0.04(860 nm) | 1.34 × 1012 (525 nm) 3.44 × 1011(860 nm) | 43 ns/636 ns | [35] |
PTB7Th/PC71BM /COi8DFIC | 300–1100 | 0.35 (670 nm) <0.30 (900 nm) | <1 × 1012 (400–1000 nm) | 900 ns/— | [36] |
MAPbI3/F8IC:PTB7-Th | 300–1000 | <0.35 (500 nm) <0.4 (870 nm) | 2.3 × 1011(870 nm) | 35 μs/20 μs | [26] |
MAPbI3/PTB7-Th/IEICO-4F | 340–940 | <0.4 (550 nm) <0.5 (850 nm) | ~1010 | 500 μs/510 μs | [25] |
MAPbI3/PTB7Th:COTIC-4F | 300–1000 | 0.58 (532 nm) 1.19 (808 nm) 1.41 (980 nm) | 1.64 × 1012 (532 nm) 3.38 × 1012(808 nm) 3.99 × 1012 (980 nm) | 1.3 μs/19 μs | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Wu, H.; Hao, Y.; Ma, F.; Zhu, P.; Li, Z.; Li, F.; Yu, J.; Liu, M.; Lei, C.; et al. High-Performance Broadband Photodetectors Combining Perovskite and Organic Bulk Heterojunction Bifunctional Layers. Crystals 2024, 14, 868. https://doi.org/10.3390/cryst14100868
Li T, Wu H, Hao Y, Ma F, Zhu P, Li Z, Li F, Yu J, Liu M, Lei C, et al. High-Performance Broadband Photodetectors Combining Perovskite and Organic Bulk Heterojunction Bifunctional Layers. Crystals. 2024; 14(10):868. https://doi.org/10.3390/cryst14100868
Chicago/Turabian StyleLi, Tengteng, Huijia Wu, Yafeng Hao, Fupeng Ma, Pu Zhu, Ziwei Li, Fengchao Li, Jiangang Yu, Meihong Liu, Cheng Lei, and et al. 2024. "High-Performance Broadband Photodetectors Combining Perovskite and Organic Bulk Heterojunction Bifunctional Layers" Crystals 14, no. 10: 868. https://doi.org/10.3390/cryst14100868
APA StyleLi, T., Wu, H., Hao, Y., Ma, F., Zhu, P., Li, Z., Li, F., Yu, J., Liu, M., Lei, C., & Liang, T. (2024). High-Performance Broadband Photodetectors Combining Perovskite and Organic Bulk Heterojunction Bifunctional Layers. Crystals, 14(10), 868. https://doi.org/10.3390/cryst14100868