Metamaterial Perfect Absorbers for Controlling Bandwidth: Single-Peak/Multiple-Peaks/Tailored-Band/Broadband
Abstract
:1. Introduction
2. The Principles of the Metamaterial Absorbers in Controlling Single-Peak/Multiple-Peaks/Tailored-Band/Broadband
2.1. Interference Theory
2.2. Impedance Matching Theory
2.3. Controling the Absorption Bandwidth
3. Design Strategies for the Bandwidth of Metamaterial Absorbers
4. Broadband Metamaterial Absorber Properties: Polarization Insensitivity and Wide Incident Angle
4.1. Polarization Insensitivity
4.2. Wide Incident Angle
5. Applications
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.-X.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of Broadband Metamaterial Absorbers: From Principles, Design Strategies, and Tunable Properties to Functional Applications. Adv. Funct. Mater. 2023, 33, 2213818. [Google Scholar] [CrossRef]
- Rhee, J.Y.; Kim, Y.J.; Yi, C.; Hwang, J.S.; Lee, Y.P. Recent Progress in Perfect Absorbers by Utilizing Metamaterials. J. Electromagn. Waves Appl. 2020, 34, 1338–1371. [Google Scholar] [CrossRef]
- Mei, H.; Yang, W.; Yang, D.; Yao, L.; Yao, Y.; Chen, C.; Cheng, L. Metamaterial Absorbers towards Broadband, Polarization Insensitivity and Tunability. Opt. Laser Technol. 2022, 147, 107627. [Google Scholar] [CrossRef]
- Gómez-Castaño, M.; Garcia-Pomar, J.L.; Pérez, L.A.; Shanmugathasan, S.; Ravaine, S.; Mihi, A. Electrodeposited Negative Index Metamaterials with Visible and near Infrared Response. Adv. Opt. Mater. 2020, 8, 2000865. [Google Scholar] [CrossRef]
- Zhai, S.L.; Zhao, X.P.; Liu, S.; Shen, F.L.; Li, L.L.; Luo, C.R. Inverse Doppler Effects in Broadband Acoustic Metamaterials. Sci. Rep. 2016, 6, 32388. [Google Scholar] [CrossRef]
- Cai, W.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Optical Cloaking with Metamaterials. Nat. Photonics 2007, 1, 224–227. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Duan, Y.; Li, L.; Zhang, S.; Wang, Y.; Yu, Y.; Hou, Z. Tunable Electromagnetically Induced Absorption Based on Coupled-Resonators in a Compact Plasmonic System. Opt. Express 2023, 31, 35697–35708. [Google Scholar] [CrossRef]
- Ranaweera, A.L.A.K.; Pham, T.S.; Bui, H.N.; Ngo, V.; Lee, J.-W. An Active Metasurface for Field-Localizing Wireless Power Transfer Using Dynamically Reconfigurable Cavities. Sci. Rep. 2019, 9, 11735. [Google Scholar] [CrossRef]
- Hiep, L.T.H.; Pham, T.S.; Khuyen, B.X.; Tung, B.S.; Ngo, Q.M.; Hien, N.T.; Minh, N.T.; Lam, V.D. Enhanced Transmission Efficiency of Magneto-Inductive Wave Propagating in Non-Homogeneous 2-D Magnetic Metamaterial Array. Phys. Scr. 2022, 97, 025504. [Google Scholar] [CrossRef]
- Cerjan, B.; Gerislioglu, B.; Link, S.; Nordlander, P.; Halas, N.J.; Griep, M.H. Towards Scalable Plasmonic Fano-Resonant Metasurfaces for Colorimetric Sensing. Nanotechnology 2022, 33, 405201. [Google Scholar] [CrossRef]
- Xue, Y.-Y.; Li, J.-S. Terahertz All-Dielectric Metasurface Sensor Based on Quasi-Bound States in the Continuum. Appl. Opt. 2023, 62, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband Metamaterial Absorbers. Adv. Opt. Mater. 2019, 7, 1800995. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Hwang, J.S.; Lee, Y.P. Flexible Perfect Metamaterial Absorbers for Electromagnetic Wave. J. Electromagn. Waves Appl. 2017, 31, 663–715. [Google Scholar] [CrossRef]
- Son, P.T.; Khuyen, B.X.; Tung, B.S.; Hiep, L.T.H.; Lam, V.D. A Critical Review on Wireless Power Transfer Systems Using Metamaterials. Vietnam J. Sci. Technol. 2022, 60, 587–613. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Z.; Liang, Z.; Meng, D.; Xu, H.; Smith, D.R.; Liu, Y. Ultra-Broadband Metamaterial Absorbers from Long to Very Long Infrared Regime. Light Sci. Appl. 2021, 10, 138. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Lang, T.; Xiao, M.; Cen, W. Graphene-Based Metamaterial Sensor for Pesticide Trace Detection. Biosensors 2023, 13, 560. [Google Scholar] [CrossRef]
- Lee, G.; Lee, D.; Park, J.; Jang, Y.; Kim, M.; Rho, J. Piezoelectric Energy Harvesting Using Mechanical Metamaterials and Phononic Crystals. Commun. Phys. 2022, 5, 94. [Google Scholar] [CrossRef]
- Jiang, S.; Li, J.; Li, J.; Lai, J.; Yi, F. Metamaterial Microbolometers for Multi-Spectral Infrared Polarization Imaging. Opt. Express 2022, 30, 9065–9087. [Google Scholar] [CrossRef]
- Chen, C.; Huang, Y.; Wu, K.; Bifano, T.G.; Anderson, S.W.; Zhao, X.; Zhang, X. Polarization Insensitive, Metamaterial Absorber-Enhanced Long-Wave Infrared Detector. Opt. Express 2020, 28, 28843–28857. [Google Scholar] [CrossRef]
- Ha, D.T.; Tung, B.S.; Khuyen, B.X.; Pham, T.S.; Tung, N.T.; Tung, N.H.; Hoa, N.T.; Lam, V.D.; Zheng, H.; Chen, L.; et al. Dual-Band, Polarization-Insensitive, Ultrathin and Flexible Metamaterial Absorber Based on High-Order Magnetic Resonance. Photonics 2021, 8, 574. [Google Scholar] [CrossRef]
- Long, L.V.; Khiem, N.S.; Tung, B.S.; Tung, N.T.; Giang, T.T.; Son, P.T.; Khuyen, B.X.; Lam, V.D.; Chen, L.; Zheng, H.; et al. Flexible Broadband Metamaterial Perfect Absorber Based on Graphene-Conductive Inks. Photonics 2021, 8, 440. [Google Scholar] [CrossRef]
- Van Long, L.; Dung, D.N.; Son, P.T.; Tung, N.T.; Hanh, V.T.H.; Ha, D.T.; Chi, D.T.; Tung, B.S.; Khuyen, B.X.; Lam, V.D. Robust Reversion of Dual-Band Polarization Conversion and Absorption Based on Flexible Metamaterial. J. Phys. Soc. Jpn. 2023, 92, 024801. [Google Scholar] [CrossRef]
- Long, L.V.; Tung, N.H.; Giang, T.T.; Son, P.T.; Tung, N.T.; Tung, B.S.; Khuyen, B.X.; Lam, V.D. Rotary Bi-Layer Ring-Shaped Metamaterials for Reconfiguration Absorbers. Appl. Opt. 2022, 61, 9078–9084. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Liu, Y.; Li, Y.; Zhao, P.; Zhang, Y.; Jiang, S. Dual-Band Terahertz Perfect Absorber Based on Metal Micro-Nano Structure. Coatings 2022, 12, 687. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, Z.; Zhang, J.; Fang, D.; Wang, J.; Liu, C.; Wu, T.; Wang, G.; Wang, L.; Ran, L.; et al. Tunable Dual-Broadband Terahertz Absorber with Vanadium Dioxide Metamaterial. Nanomaterials 2022, 12, 1731. [Google Scholar] [CrossRef] [PubMed]
- Alsulami, Q.A.; Wageh, S.; Al-Ghamdi, A.A.; Bilal, R.M.H.; Saeed, M.A. A Tunable and Wearable Dual-Band Metamaterial Absorber Based on Polyethylene Terephthalate (PET) Substrate for Sensing Applications. Polymers 2022, 14, 4503. [Google Scholar] [CrossRef]
- Ha, D.T.; Dzung, D.N.; Ngoc, N.V.; Tung, B.S.; Pham, T.S.; Lee, Y.; Chen, L.Y.; Khuyen, B.X.; Lam, V.D. Switching between Perfect Absorption and Polarization Conversion, Based on Hybrid Metamaterial in the GHz and THz Bands. J. Phys. Appl. Phys. 2021, 54, 234003. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Kim, Y.J.; Lee, Y. Perfect Absorbers for Electromagnetic Wave, Based on Metamaterials. J. Korean Phys. Soc. 2015, 67, 1095–1109. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Zheng, H.Y.; Kim, Y.J.; Rhee, J.Y.; Kang, J.-H.; Kim, K.W.; Cheong, H.; Kim, Y.H.; Lee, Y.P. Flexible and Elastic Metamaterial Absorber for Low Frequency, Based on Small-Size Unit Cell. Appl. Phys. Lett. 2014, 105, 041902. [Google Scholar] [CrossRef]
- Luu, D.H.; Van Dung, N.; Hai, P.; Giang, T.T.; Lam, V.D. Switchable and Tunable Metamaterial Absorber in THz Frequencies. J. Sci. Adv. Mater. Devices 2016, 1, 65–68. [Google Scholar] [CrossRef]
- Khuyen, B.X.; Tung, B.S.; Kim, Y.J.; Hwang, J.S.; Kim, K.W.; Rhee, J.Y.; Lam, V.D.; Kim, Y.H.; Lee, Y. Ultra-Subwavelength Thickness for Dual/Triple-Band Metamaterial Absorber at Very Low Frequency. Sci. Rep. 2018, 8, 11632. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, J.M.; Yoo, Y.J.; Tuong, P.V.; Zheng, H.; Rhee, J.Y.; Lee, Y. Dual-Absorption Metamaterial Controlled by Electromagnetic Polarization. J. Opt. Soc. Am. B 2014, 31, 2744–2747. [Google Scholar] [CrossRef]
- Nam, M.H.; Tung, B.S.; Khuyen, B.X.; Ha, D.T.; Ngoc, N.V.; Tran, M.C.; Le, D.T.; Lam, V.D.; Chen, L.; Zheng, H.; et al. Graphene-Integrated Plasmonic Metamaterial for Manipulation of Multi-Band Absorption, Based on near-Field Coupled Resonators. Crystals 2022, 12, 525. [Google Scholar] [CrossRef]
- Liang, C.; Kong, X.; Wang, F.; Xu, R.; Fu, Y.; Pang, X.; Zhang, S.; Shen, X.; Zhao, L. A Broadband Perfect Metamaterial Absorber with Angle-Insensitive Characteristics. J. Electromagn. Waves Appl. 2023, 37, 401–410. [Google Scholar] [CrossRef]
- Qu, S.; Hou, Y.; Sheng, P. Conceptual-Based Design of an Ultrabroadband Microwave Metamaterial Absorber. Proc. Natl. Acad. Sci. USA 2021, 118, e2110490118. [Google Scholar] [CrossRef] [PubMed]
- Mattiucci, N.; Bloemer, M.J.; Aközbek, N.; D’Aguanno, G. Impedance Matched Thin Metamaterials Make Metals Absorbing. Sci. Rep. 2013, 3, 3203. [Google Scholar] [CrossRef]
- Jung, J.; Park, H.; Park, J.; Chang, T.; Shin, J. Broadband Metamaterials and Metasurfaces: A Review from the Perspectives of Materials and Devices. Nanophotonics 2020, 9, 3165–3196. [Google Scholar] [CrossRef]
- Liu, T.; Caballero, J.M.; Wang, Y. Design of Metamaterial Solar Absorber Based on Impedance Matching Theory. Plasmonics 2023, 1–11. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yoo, Y.J.; Hwang, J.S.; Lee, Y.P. Ultrathin Microwave Absorber Based on Metamaterial. J. Phys. Appl. Phys. 2016, 49, 435102. [Google Scholar] [CrossRef]
- Sayed, S.I.; Mahmoud, K.R.; Mubarak, R.I. Design and Optimization of Broadband Metamaterial Absorber Based on Manganese for Visible Applications. Sci. Rep. 2023, 13, 11937. [Google Scholar] [CrossRef]
- Deng, G.; Lv, K.; Sun, H.; Hong, Y.; Zhang, X.; Yin, Z.; Li, Y.; Yang, J. An Ultra-Wideband, Polarization Insensitive Metamaterial Absorber Based on Multiple Resistive Film Layers with Wide-Incident-Angle Stability. Int. J. Microw. Wirel. Technol. 2020, 13, 58–66. [Google Scholar] [CrossRef]
- Norouzi, M.; Jarchi, S.; Ghaffari-Miab, M.; Esfandiari, M.; Lalbakhsh, A.; Koziel, S.; Reisenfeld, S.; Moloudian, G. 3D Metamaterial Ultra-Wideband Absorber for Curved Surface. Sci. Rep. 2023, 13, 1043. [Google Scholar] [CrossRef]
- Chen, H.-T. Interference Theory of Metamaterial Perfect Absorbers. Opt. Express 2012, 20, 7165–7172. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X.; Wu, S.; Zhang, D.; Xiao, H.; Huang, K.; Zhu, Z.; Yuan, J. Flexible and Conformable Broadband Metamaterial Absorber with Wide-Angle and Polarization Stability for Radar Application. Mater. Res. Express 2018, 5, 015804. [Google Scholar] [CrossRef]
- Amer, A.A.G.; Sapuan, S.Z.; Alzahrani, A.; Nasimuddin, N.; Salem, A.A.; Ghoneim, S.S.M. Design and Analysis of Polarization-Independent, Wide-Angle, Broadband Metasurface Absorber Using Resistor-Loaded Split-Ring Resonators. Electronics 2022, 11, 1986. [Google Scholar] [CrossRef]
- Zhao, X.; Fan, K.; Zhang, J.; Seren, H.R.; Metcalfe, G.D.; Wraback, M.; Averitt, R.D.; Zhang, X. Optically Tunable Metamaterial Perfect Absorber on Highly Flexible Substrate. Sens. Actuators Phys. 2015, 231, 74–80. [Google Scholar] [CrossRef]
- Lei, L.; Lou, F.; Tao, K.; Huang, H.; Cheng, X.; Xu, P. Tunable and Scalable Broadband Metamaterial Absorber Involving VO2-Based Phase Transition. Photonics Res. 2019, 7, 734–741. [Google Scholar] [CrossRef]
- Lei, M.; Feng, N.; Wang, Q.; Hao, Y.; Huang, S.; Bi, K. Magnetically Tunable Metamaterial Perfect Absorber. J. Appl. Phys. 2016, 119, 244504. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, Y.; Xia, T.; Lai, W.; Yang, J.; Lu, H.; Deng, G. Electrically Tunable Terahertz Dual-Band Metamaterial Absorber Based on a Liquid Crystal. RSC Adv. 2018, 8, 4197–4203. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Tian, Y.; Zheng, Y. Mechanically Stretchable Metamaterial with Tunable Mid-Infrared Optical Properties. Opt. Express 2021, 29, 37368–37375. [Google Scholar] [CrossRef]
- Guo, Y.; Hou, X.; Lv, X.; Bi, K.; Lei, M.; Zhou, J. Tunable Artificial Microwave Blackbodies Based on Metasurfaces. Opt. Express 2017, 25, 25879–25885. [Google Scholar] [CrossRef]
- Park, J.W.; Tuong, P.V.; Rhee, J.Y.; Kim, K.W.; Jang, W.H.; Choi, E.H.; Chen, L.Y.; Lee, Y. Multi-Band Metamaterial Absorber Based on the Arrangement of Donut-Type Resonators. Opt. Express 2013, 21, 9691–9702. [Google Scholar] [CrossRef]
- Ullah, N.; Islam, M.S.; Hoque, A.; Yong, W.H.; Alrashdi, A.M.; Soliman, M.S.; Islam, M.T. An Efficient, Compact, Wide-Angle, Wide-Band, and Polarization-Insensitive Metamaterial Electromagnetic Energy Harvester. Alex. Eng. J. 2023, 82, 377–388. [Google Scholar] [CrossRef]
- Quan, C.; Zou, J.; Guo, C.; Xu, W.; Zhu, Z.; Zhang, J. High-Temperature Resistant Broadband Infrared Stealth Metamaterial Absorber. Opt. Laser Technol. 2022, 156, 108579. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, L.; Lee, Y. High-Performance and Flexible Metamaterial Wave Absorbers with Specific Bandwidths for the Microwave Device. Crystals 2023, 13, 868. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, S.; Long, C.; Dong, B.W.; He, D.; Cheng, Q. Hybrid Metamaterial Absorber for Ultra-Low and Dual-Broadband Absorption. Opt. Express 2021, 29, 14078–14086. [Google Scholar] [CrossRef]
- Li, S.; Gao, J.; Cao, X.; Li, W.; Zhang, Z.; Zhang, D. Wideband, Thin, and Polarization-Insensitive Perfect Absorber Based the Double Octagonal Rings Metamaterials and Lumped Resistances. J. Appl. Phys. 2014, 116, 043710. [Google Scholar] [CrossRef]
- Bai, J.; Yang, Q.; Liang, Y.; Gao, X. Broadband Frequency Selective Rasorber Based on Spoof Surface Plasmon Polaritons. Micromachines 2022, 13, 1969. [Google Scholar] [CrossRef]
- Liu, S.; Ding, F.; Wu, J.; Zhang, Q.; Yang, H. A Metamaterial Absorber with Centre-Spin Design and Characteristic Modes Analysis. Phys. Scr. 2022, 97, 045502. [Google Scholar] [CrossRef]
- Karthikeyan, M.; Jayabala, P.; Ramachandran, S.; Dhanabalan, S.S.; Sivanesan, T.; Ponnusamy, M. Tunable Optimal Dual Band Metamaterial Absorber for High Sensitivity THz Refractive Index Sensing. Nanomaterials 2022, 12, 2693. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Huang, Z.; Liu, X.; Fu, G. Ultra-Broadband Perfect Solar Absorber by an Ultra-Thin Refractory Titanium Nitride Meta-Surface. Sol. Energy Mater. Sol. Cells 2018, 179, 346–352. [Google Scholar] [CrossRef]
- Guler, U.; Boltasseva, A.; Shalaev, V.M. Refractory Plasmonics. Science 2014, 344, 263–264. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Liu, X.; Chen, J.; Tang, C. Spatial and Frequency-Selective Optical Field Coupling Absorption in an Ultra-Thin Random Metasurface. Opt. Lett. 2023, 48, 1586–1589. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Z.; Liu, G.; Pan, P.; Liu, X.; Tang, C.; Liu, Z.; Wang, J. Ultra-Broadband Solar Absorbers for High-Efficiency Thermophotovoltaics. Opt. Express 2020, 28, 36476–36486. [Google Scholar] [CrossRef]
- Weng, Z.; Guo, Y. Broadband Perfect Optical Absorption by Coupled Semiconductor Resonator-Based All-Dielectric Metasurface. Materials 2019, 12, 1221. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Hou, X.; Lv, X.; Liang, H.; Zhou, J. A Simple Topology Metamaterial Blackbody for Visible Light. J. Alloys Compd. 2017, 699, 998–1002. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, L.; Lee, Y.-P. Flexible Metamaterial Absorber with Tailored Bandwidth and High Absorption Performance. Crystals 2022, 12, 182. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Lim, S. Wide Incidence Angle-Insensitive Metamaterial Absorber for Both TE and TM Polarization Using Eight-Circular-Sector. Sci. Rep. 2017, 7, 3204. [Google Scholar] [CrossRef]
- Hakim, M.L.; Alam, T.; Islam, M.S.; Salaheldeen, M.M.; Almalki, S.H.A.; Baharuddin, M.H.; Alsaif, H.; Islam, M.T. Wide-Oblique-Incident-Angle Stable Polarization-Insensitive Ultra-Wideband Metamaterial Perfect Absorber for Visible Optical Wavelength Applications. Materials 2022, 15, 2201. [Google Scholar] [CrossRef]
- Amiri, M.; Tofigh, F.; Shariati, N.; Lipman, J.; Abolhasan, M. Wide-Angle Metamaterial Absorber with Highly Insensitive Absorption for TE and TM Modes. Sci. Rep. 2020, 10, 13638. [Google Scholar] [CrossRef]
- Hossain, I.; Islam, M.T.; Samsuzzaman, M.; Moniruzzaman, M.; Sahar, N.B.M.; Almalki, S.H.A.; Salaheldeen, M.M.; Alzamil, A.; Islam, M.S. Polarization Insensitive Split Square Ring Resonator Based Epsilon-Negative and near Zero Refractive Index Metamaterial for S, C, and X Frequency Bands Satellite and Radar Communications. Sci. Rep. 2022, 12, 9294. [Google Scholar] [CrossRef]
- Kalraiya, S.; Chaudhary, R.K.; Abdalla, M.A. Design and Analysis of Polarization Independent Conformal Wideband Metamaterial Absorber Using Resistor Loaded Sector Shaped Resonators. J. Appl. Phys. 2019, 125, 134904. [Google Scholar] [CrossRef]
- Kumar, P.; Ali, T.; Pai, M.M.M. Electromagnetic Metamaterials: A New Paradigm of Antenna Design. IEEE Access 2021, 9, 18722–18751. [Google Scholar] [CrossRef]
- Althuwayb, A.A. Enhanced Radiation Gain and Efficiency of a Metamaterial-Inspired Wideband Microstrip Antenna Using Substrate Integrated Waveguide Technology for Sub-6 GHz Wireless Communication Systems. Microw. Opt. Technol. Lett. 2021, 63, 1892–1898. [Google Scholar] [CrossRef]
- Ramachandran, T.; Faruque, M.R.I.; Islam, M.T.; Khandaker, M.U. Radar Cross-Section Reduction Using Polarisation-Dependent Passive Metamaterial for Satellite Communication. Chin. J. Phys. 2022, 76, 251–268. [Google Scholar] [CrossRef]
- Ramachandran, T.; Faruque, M.R.I.; Islam, M.T.; Khandaker, M.U.; Al-mugren, K.S. Development of Diverse Coding Metamaterial Structure for Radar Cross Section Reduction Applications. Sci. Rep. 2022, 12, 10958. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, M. Simple Design of Metamaterial Sensor for Biomedical Sensing. Phys. Scr. 2022, 97, 125504. [Google Scholar] [CrossRef]
- Islam, M.R.; Islam, M.T.; Bais, B.; Almalki, S.H.; Alsaif, H.; Islam, M.S. Metamaterial Sensor Based on Rectangular Enclosed Adjacent Triple Circle Split Ring Resonator with Good Quality Factor for Microwave Sensing Application. Sci. Rep. 2022, 12, 6792. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, P.; Lin, Y.-S. Tunable Split-Disk Metamaterial Absorber for Sensing Application. Nanomaterials 2021, 11, 598. [Google Scholar] [CrossRef]
- Góra, P.; Łopato, P. Metamaterials’ Application in Sustainable Technologies and an Introduction to Their Influence on Energy Harvesting Devices. Appl. Sci. 2023, 13, 7742. [Google Scholar] [CrossRef]
- Fowler, C.; Silva, S.; Thapa, G.; Zhou, J. High Efficiency Ambient RF Energy Harvesting by a Metamaterial Perfect Absorber. Opt. Mater. Express 2022, 12, 1242–1250. [Google Scholar] [CrossRef]
- Dincer, F. Electromagnetic Energy Harvesting Application Based on Tunable Perfect Metamaterial Absorber. J. Electromagn. Waves Appl. 2015, 29, 2444–2453. [Google Scholar] [CrossRef]
- Kim, M.; Rho, J. Metamaterials and Imaging. Nano Converg. 2015, 2, 22. [Google Scholar] [CrossRef]
- Roh, Y.; Lee, S.-H.; Kwak, J.; Song, H.S.; Shin, S.; Kim, Y.K.; Wu, J.W.; Ju, B.-K.; Kang, B.; Seo, M. Terahertz Imaging with Metamaterials for Biological Applications. Sens. Actuators B Chem. 2022, 352, 130993. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Pham, T.S.; Chen, L.; Lee, Y. Metamaterial Perfect Absorbers for Controlling Bandwidth: Single-Peak/Multiple-Peaks/Tailored-Band/Broadband. Crystals 2024, 14, 19. https://doi.org/10.3390/cryst14010019
Zheng H, Pham TS, Chen L, Lee Y. Metamaterial Perfect Absorbers for Controlling Bandwidth: Single-Peak/Multiple-Peaks/Tailored-Band/Broadband. Crystals. 2024; 14(1):19. https://doi.org/10.3390/cryst14010019
Chicago/Turabian StyleZheng, Haiyu, Thanh Son Pham, Liangyao Chen, and Youngpak Lee. 2024. "Metamaterial Perfect Absorbers for Controlling Bandwidth: Single-Peak/Multiple-Peaks/Tailored-Band/Broadband" Crystals 14, no. 1: 19. https://doi.org/10.3390/cryst14010019
APA StyleZheng, H., Pham, T. S., Chen, L., & Lee, Y. (2024). Metamaterial Perfect Absorbers for Controlling Bandwidth: Single-Peak/Multiple-Peaks/Tailored-Band/Broadband. Crystals, 14(1), 19. https://doi.org/10.3390/cryst14010019