Electrically Tunable Liquid Crystal Phase Grating with Double Period Based on the VIS Mode
Abstract
1. Introduction
2. Device Structure and Principle
3. Simulation Results and Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, H.; Shao, W.; Li, Y.; Salim, F.; Gu, M. Three-dimensional vectorial holography based on machine learning inverse design. Sci. Adv. 2020, 6, eaaz4261. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-G.; Sun, X.-F.; Song, Y.; Shieh, H.-P.D. 2-D/3-D Switchable Display by Fresnel-Type LC Lens. J. Disp. Technol. 2011, 7, 215–219. [Google Scholar] [CrossRef]
- Wakunami, K.; Hsieh, P.-Y.; Oi, R.; Senoh, T.; Sasaki, H.; Ichihashi, Y.; Okui, M.; Huang, Y.-P.; Yamamoto, K. Projection-type see-through holographic three-dimensional display. Nat. Commun. 2016, 7, 12954. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, N.-N.; Li, Y.-L.; Zheng, Y.-W.; Nie, Z.-Q.; Li, Z.-S.; Chu, F.; Wang, Q.-H. Large viewing angle holographic 3D display system based on maximum diffraction modulation. Light Adv. Manuf. 2023, 4, 18. [Google Scholar] [CrossRef]
- Shi, L.; Li, B.; Kim, C.; Kellnhofer, P.; Matusik, W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 2021, 591, 234–239. [Google Scholar] [CrossRef]
- Ghaith, M.; Özgün, Y.; Kesim, D.K.; Ahmet, T.; Parviz, E.; Serim, L.; Llday, T.O. Breaking crosstalk limits to dynamic holog-raphy using orthogonality of high-dimensional random vectors. Nat. Photonics 2019, 13, 251–256. [Google Scholar]
- Peng, Y.; Choi, S.; Kim, J.; Wetzstein, G. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration. Sci. Adv. 2021, 7, eabg5040. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Fan, X.; Jiao, B.; Li, T.; Shang, C.; Zeng, C.; Deng, L.; Xiong, W.; Xia, J.; et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Sci. Adv. 2020, 6, eaba8595. [Google Scholar] [CrossRef]
- Park, J.; Lee, K.; Park, Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nat. Commun. 2019, 10, 1304. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Ma, J.; Yang, D.-K.; White, T.J.; Bunning, T.J. Directing Dynamic Control of Red, Green, and Blue Reflection Enabled by a Light-Driven Self-Organized Helical Superstructure. Adv. Mater. 2011, 23, 5069–5073. [Google Scholar] [CrossRef] [PubMed]
- Gilardi, G.; De Sio, L.; Beccherelli, R.; Asquini, R.; D’alessandro, A.; Umeton, C. Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals. Opt. Lett. 2011, 36, 4755–4757. [Google Scholar] [CrossRef]
- Xu, D.; Tan, G.; Wu, S.-T. Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal. Opt. Express 2015, 23, 12274–12285. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bos, P.J.; Vithana, H.; Johnson, D.L. An electro & hyphen optically controlled liquid crystal diffraction grating. Appl. Phys. Lett. 1995, 67, 2588–2592. [Google Scholar]
- Friedman, L.J.; Hobbs, D.S.; Lieberman, S.; Corkum, D.L.; Nguyen, H.Q.; Resler, D.P.; Sharp, R.C.; Dorschner, T.A. Copy-right 2006 society of photo instrumentation engineers. Proc. IEEE 1996, 84, 268–298. [Google Scholar]
- Dou, H.; Wang, L.; Xu, L.-P.; Mao, X.; Ou, J.-Y.; Nie, J.-Y.; Wang, S.-R.; Wang, S.; Dan, Y.-Q. Directional modulated light-emitting technology based on airborne display. Liq. Cryst. 2022, 49, 2146–2154. [Google Scholar] [CrossRef]
- Ren, H.; Fan, Y.-H.; Wu, S.-T. Prism grating using polymer stabilized nematic liquid crystal. Appl. Phys. Lett. 2003, 82, 3168–3170. [Google Scholar] [CrossRef]
- Algorri, J.F.; Urruchi, V.; Bennis, N.; Sánchez-Pena, J.M. Cylindrical liquid crystal micro-lens array with rotary axis and tunable capability. IEEE Electron Device Lett. 2015, 36, 582–584. [Google Scholar] [CrossRef]
- Chu, F.; Guo, Y.-Q.; Zhang, Y.-X.; Duan, W.; Zhang, H.-L.; Tian, L.-L.; Li, L.; Wang, Q.-H. Four-mode 2D/3D switchable display with a 1D/2D convertible liquid crystal lens array. Opt. Express 2021, 29, 37464–37475. [Google Scholar] [CrossRef]
- Gilardi, G.; Asquini, R.; D’Alessandro, A.; Beccherelli, R.; De Sio, L.; Umeton, C. All-Optical and Thermal Tuning of a Bragg Grating Based on Photosensitive Composite Structures Containing Liquid Crystals. Mol. Cryst. Liq. Cryst. 2012, 558, 64–71. [Google Scholar] [CrossRef]
- Chang, C.; Bang, K.; Wetzstein, G.; Lee, B.; Gao, L. Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective. Optica 2020, 7, 1563–1578. [Google Scholar] [CrossRef]
- Blanche, P.-A. Holography, and the future of 3D display. Light Adv. Manuf. 2021, 2, 28. [Google Scholar] [CrossRef]
- Yu, H.; Lee, K.; Park, J.; Park, Y. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat. Photonics 2017, 11, 186–192. [Google Scholar] [CrossRef]
- Simeon, S.; Margarita, M.; Marga, P.; Dimitar, T. Holographic diffraction grating controlled by means of nematic liquid crystal. Mol. Cryst. 1987, 152, 609–615. [Google Scholar]
- Dou, H.; Wang, L.; Ren, G.; Dan, Y.-Q.; Zhong, X.-T.; Ou, J.-Y.; Yuan, J.-Y.; Zhong, Y.-T. A Light-Mixing Liquid Crystal Lens-Like Cell to Decrease Color Shift and Tune Brightness for Displays. Crystals 2022, 12, 213. [Google Scholar] [CrossRef]
- Caputo, R.; De Sio, L.; Veltri, A.; Umeton, C.; Sukhov, A.V. Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material. Opt. Lett. 2004, 29, 1261–1263. [Google Scholar] [CrossRef]
- Gu, L.; Chen, X.; Jiang, W.; Howley, B.; Chen, R.T. Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings. Appl. Phys. Lett. 2005, 87, 201106. [Google Scholar] [CrossRef]
- Wang, B.; Ye, M.; Sato, S. Liquid Crystal Negative Lens. Jpn. J. Appl. Phys. 2005, 44, 4979–4983. [Google Scholar] [CrossRef]
- Dou, H.; Chen, M.; Li, D.; Yu, G.; Sun, Y.-B. A controllable viewing angle optical film using micro prisms filled with liquid crystal. Liq. Cryst. 2021, 48, 1373–1381. [Google Scholar] [CrossRef]
- Lien, A. The general and simplified Jones matrix representations for the high pretilt twisted nematic cell. J. Appl. Phys. 1990, 67, 2853–2856. [Google Scholar] [CrossRef]
- Li, J.-N.; Hu, X.-K.; Wei, B.-Y.; Wu, Z.-J.; Ge, S.-J.; Ji, W.; Hu, W.; Lu, Y.-Q. Simulation and optimization of liquid crystal gratings with alternate twisted nematic and planar aligned regions. Appl. Opt. 2014, 53, E14–E18. [Google Scholar] [CrossRef]
- Magnusson, R.; Gaylord, T.K. Diffraction efficiencies of thin phase gratings with arbitrary grating space. J. Opt. Soc. Am. A. 1978, 68, 806–809. [Google Scholar] [CrossRef]
- Xiong, J.; Hsiang, E.-L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Kowerdziej, R.; Wróbel, J.; Kula, P. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal. Sci. Rep. 2019, 9, 20367. [Google Scholar] [CrossRef] [PubMed]
- Golovin, A.B.; Shiyanovskii, S.V.; Lavrentovich, O.D. Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage. Appl. Phys. Lett. 2003, 83, 3864–3866. [Google Scholar] [CrossRef]
- Xianyu, H.; Wu, S.-T.; Lin, C.-L. Dual frequency liquid crystals: A review. Liq. Cryst. 2009, 36, 717–726. [Google Scholar] [CrossRef]
- Yan, J.; Li, Y.; Wu, S.-T. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal. Opt. Lett. 2011, 36, 1404–1406. [Google Scholar] [CrossRef]
Material | ∆n | ∆ε | γ | K11 | K22 | K33 | ne | no |
---|---|---|---|---|---|---|---|---|
E7-LC | 0.224 | 11.4 | 29 mPa·s | 16.7 pN | 7.3 pN | 18.1 pN | 1.741 | 1.517 |
Type | Gap | Width | d | h | Periodic Order |
---|---|---|---|---|---|
1 | w12 = 18 μm | w11 = 2 μm | 20 μm | 10 μm | Small |
2 | w22 = 38 μm | w21 = 2 μm | 40 μm | 10 μm | Large |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Li, Y.; Zeng, Y.-M.; Yu, L.; Tian, L.-L. Electrically Tunable Liquid Crystal Phase Grating with Double Period Based on the VIS Mode. Crystals 2023, 13, 1235. https://doi.org/10.3390/cryst13081235
Guo Z, Li Y, Zeng Y-M, Yu L, Tian L-L. Electrically Tunable Liquid Crystal Phase Grating with Double Period Based on the VIS Mode. Crystals. 2023; 13(8):1235. https://doi.org/10.3390/cryst13081235
Chicago/Turabian StyleGuo, Zhou, Yao Li, Yu-Meng Zeng, Le Yu, and Li-Lan Tian. 2023. "Electrically Tunable Liquid Crystal Phase Grating with Double Period Based on the VIS Mode" Crystals 13, no. 8: 1235. https://doi.org/10.3390/cryst13081235
APA StyleGuo, Z., Li, Y., Zeng, Y.-M., Yu, L., & Tian, L.-L. (2023). Electrically Tunable Liquid Crystal Phase Grating with Double Period Based on the VIS Mode. Crystals, 13(8), 1235. https://doi.org/10.3390/cryst13081235