High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. High Pressure Raman Scattering Study
3.2. High Pressure X-ray Diffraction Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Fujimoto, M. The Physics of Structural Phase Transitions; Springer: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Cross, E. Lead-free at last. Nature 2004, 432, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y. Ferroelectric Materials and Their Applications; Sole distributors for the USA and Canada, Elsevier Science Pub. Co.: Amsterdam, The Netherlands; New York, NY, USA, 1991. [Google Scholar]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.M.; Ahn, C.; Triscone, J.M. Physics of Ferroelectrics: A Modern Perspective; Springer: Berlin, Germany, 2007; Volume 105. [Google Scholar]
- Rödel, J.; Webber, K.G.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. [Google Scholar] [CrossRef]
- Scott, J.F. Applications of Modern Ferroelectrics. Science 2007, 315, 954. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.-G. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Zheng, T.; Wu, J.; Xiao, D.; Zhu, J. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 2018, 98, 552–624. [Google Scholar] [CrossRef]
- Htet, C.S.; Nayak, S.; Manjón-Sanz, A.; Liu, J.; Kong, J.; Sørensen, D.R.; Marlton, F.; Jørgensen, M.R.V.; Pramanick, A. Atomic structural mechanism for ferroelectric-antiferroelectric transformation in perovskite NaNbO3. Phys. Rev. B 2022, 105, 174113. [Google Scholar] [CrossRef]
- Vilarinho, R.; Bouvier, P.; Guennou, M.; Peral, I.; Weber, M.C.; Tavares, P.; Mihalik, M.; Mihalik, M.; Garbarino, G.; Mezouar, M.; et al. Crossover in the pressure evolution of elementary distortions in RFe3 perovskites and its impact on their phase transition. Phys. Rev. B 2019, 99, 064109. [Google Scholar] [CrossRef]
- Xiang, H.J.; Guennou, M.; Íñiguez, J.; Kreisel, J.; Bellaiche, L. Rules and mechanisms governing octahedral tilts in perovskites under pressure. Phys. Rev. B 2017, 96, 054102. [Google Scholar] [CrossRef]
- Zhou, J.S. Structural distortions in rare-earth transition-metal oxide perovskites under high pressure. Phys. Rev. B 2020, 101, 224104. [Google Scholar] [CrossRef]
- Mishra, S.K.; Choudhury, N.; Chaplot, S.L.; Krishna, P.S.R.; Mittal, R. Competing antiferroelectric and ferroelectric interactions in NaNbO3 Neutron diffraction and theoretical studies. Phys. Rev. B 2007, 76, 024110. [Google Scholar] [CrossRef]
- Xie, A.; Qi, H.; Zuo, R.; Tian, A.; Chen, J.; Zhang, S. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts. J. Mater. Chem. C 2019, 7, 15153–15161. [Google Scholar] [CrossRef]
- Xu, Q.; Li, T.; Hao, H.; Zhang, S.; Wang, Z.; Cao, M.; Yao, Z.; Liu, H. Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 2015, 35, 545–553. [Google Scholar] [CrossRef]
- Mishra, S.K.; Mittal, R.; Pomjakushin, V.Y.; Chaplot, S.L. Phase stability and structural temperature dependence in sodium niobate: A high-resolution powder neutron diffraction study. Phys. Rev. B 2011, 83, 134105. [Google Scholar] [CrossRef]
- Mishra, S.K.; Gupta, M.K.; Mittal, R.; Chaplot, S.L.; Hansen, T. Suppression of antiferroelectric state in NaNbO3 at high pressure from in situ neutron diffraction. Appl. Phys. Lett. 2012, 101, 242907. [Google Scholar] [CrossRef]
- Mishra, S.K.; Gupta, M.K.; Mittal, R.; Zbiri, M.; Rols, S.; Schober, H.; Chaplot, S.L. Phonon dynamics and inelastic neutron scattering of sodium niobate. Phys. Rev. B 2014, 89, 184303. [Google Scholar] [CrossRef]
- Lanfredi, S.; Lente, M.H.; Eiras, J.A. Phase transition at low temperature in NaNbO3 ceramic. Appl. Phys. Lett. 2002, 80, 2731–2733. [Google Scholar] [CrossRef]
- Lima, R.J.C.; Freire, P.T.C.; Sasaki, J.M.; Ayala, A.P.; Melo, F.E.A.; Mendes Filho, J.; Serra, K.C.; Lanfredi, S.; Lente, M.H.; Eiras, J.A. Temperature-dependent Raman scattering studies in NaNbO3 ceramics. J. Raman Spectrosc. 2002, 33, 669–674. [Google Scholar] [CrossRef]
- Lin, S.J.; Chiang, D.P.; Chen, Y.F.; Peng, C.H.; Liu, H.T.; Mei, J.K.; Tse, W.S.; Tsai, T.R.; Chiang, H.P. Raman scattering investigations of the low-temperature phase transition of NaNbO3. J. Raman Spectrosc. 2006, 37, 1442–1446. [Google Scholar] [CrossRef]
- Shen, Z.X.; Wang, X.B.; Kuok, M.H.; Tang, S.H. Raman scattering investigations of the antiferroelectric–ferroelectric phase transition of NaNbO3. J. Raman Spectrosc. 1998, 29, 379–384. [Google Scholar] [CrossRef]
- Shen, Z.X.; Wang, X.B.; Tang, S.H.; Kuok, M.H.; Malekfar, R. High-pressure Raman study and pressure-induced phase transitions of sodium niobate NaNbO3. J. Raman Spectrosc. 2000, 31, 439–443. [Google Scholar] [CrossRef]
- Shiratori, Y.; Magrez, A.; Dornseiffer, J.; Haegel, F.-H.; Pithan, C.; Waser, R. Polymorphism in Micro-, Submicro-, and Nanocrystalline NaNbO3. J. Phys. Chem. B 2005, 109, 20122–20130. [Google Scholar] [CrossRef]
- Shiratori, Y.; Magrez, A.; Fischer, W.; Pithan, C.; Waser, R. Temperature-induced Phase Transitions in Micro-, Submicro-, and Nanocrystalline NaNbO3. J. Phys. Chem. C 2007, 111, 18493–18502. [Google Scholar] [CrossRef]
- Shiratori, Y.; Magrez, A.; Kato, M.; Kasezawa, K.; Pithan, C.; Waser, R. Pressure-Induced Phase Transitions in Micro-, Submicro-, and Nanocrystalline NaNbO3. J. Phys. Chem. C 2008, 112, 9610–9616. [Google Scholar] [CrossRef]
- Kichanov, S.E.; Kozlenko, D.P.; Belozerova, N.M.; Jabarov, S.H.; Mehdiyeva, R.Z.; Lukin, E.V.; Mammadov, A.I.; Liermann, H.P.; Morgenroth, W.; Dubrovinsky, L.S.; et al. An intermediate antipolar phase in NaNbO3 under compression. Ferroelectrics 2017, 520, 22–33. [Google Scholar] [CrossRef]
- Jauhari, M.; Mishra, S.K.; Mittal, R.; Sastry, P.U.; Chaplot, S.L. Effect of chemical pressure on competition and cooperation between polar and antiferrodistortive distortions in sodium niobate. Phys. Rev. Mater. 2017, 1, 074411. [Google Scholar] [CrossRef]
- Jauhari, M.; Mishra, S.K.; Mittal, R.; Chaplot, S.L. Probing of structural phase transitions in barium titanate modified sodium niobate using Raman scattering. J. Raman Spectrosc. 2019, 50, 1177–1185. [Google Scholar] [CrossRef]
- Raevskii, I.P.; Proskuryakova, L.M.; Reznichenko, L.A.; Zvorykina, E.K.; Shilkina, L.A. Obtaining solid solutions in the NaNbO3-BaTiO3 system and investigation of its properties. Sov. Phys. J. 1978, 21, 259–261. [Google Scholar] [CrossRef]
- Zuo, R.; Qi, H.; Fu, J.; Li, J.; Shi, M.; Xu, Y. Giant electrostrictive effects of NaNbO3-BaTiO3 lead-free relaxor ferroelectrics. Appl. Phys. Lett. 2016, 108, 232904. [Google Scholar] [CrossRef]
- Zuo, R.; Qi, H.; Fu, J.; Li, J.-F.; Li, L. Multiscale identification of local tetragonal distortion in NaNbO3-BaTiO3 weak relaxor ferroelectrics by Raman, synchrotron x-ray diffraction, and absorption spectra. Appl. Phys. Lett. 2017, 111, 132901. [Google Scholar] [CrossRef]
- Jauhari, M.; Mishra, S.K.; Poswal, H.K.; Mittal, R.; Chaplot, S.L. Evidence of low-temperature phase transition in BaTiO3-modified NaNbO3: Raman spectroscopy study. J. Raman Spectrosc. 2019, 50, 1949–1955. [Google Scholar] [CrossRef]
- Mishra, S.K.; Mrinal, J.; Mittal, R.; Krishna, P.S.R.; Reddy, V.R.; Chaplot, S.L. Evidence for existence of functional monoclinic phase in sodium niobate based solid solution by powder neutron diffraction. Appl. Phys. Lett. 2018, 112, 182905. [Google Scholar] [CrossRef]
- Zeng, J.T.; Kwok, K.W.; Chan, H.L.W. Ferroelectric and Piezoelectric Properties of Na1−xBaxNb1−xTixO3 Ceramics. J. Am. Ceram. Soc. 2006, 89, 2828–2832. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Errandonea, D.; Meng, Y.; Somayazulu, M.; Häusermann, D. Pressure-induced α→ω transition in titanium metal: A systematic study of the effects of uniaxial stress. Phys. B Condens. Matter 2005, 355, 116–125. [Google Scholar] [CrossRef]
- Errandonea, D.; Muñoz, A.; Gonzalez-Platas, J. Comment on “High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3”. J. Appl. Phys. 2014, 115, 216101. [Google Scholar] [CrossRef]
- Wang, X.B.; Shen, Z.X.; Tang, S.H.; Kuok, M.H. Near infrared excited micro-Raman spectra of 4:1 methanol–ethanol mixture and ruby fluorescence at high pressure. J. Appl. Phys. 1999, 85, 8011–8017. [Google Scholar] [CrossRef]
- Garg, N.; Pandey, K.K.; Shanavas, K.V.; Betty, C.A.; Sharma, S.M. Memory effect in low-density amorphous silicon under pressure. Phys. Rev. B 2011, 83, 115202. [Google Scholar] [CrossRef]
- Angel, R.J.; Zhao, J.; Ross, N.L. General Rules for Predicting Phase Transitions in Perovskites due to Octahedral Tilting. Phys. Rev. Lett. 2005, 95, 025503. [Google Scholar] [CrossRef]





| Atom | Pressure = 4.1 GPa Space Group Pmc21 | Pressure = 38.48 GPa Space Group Pbnm | ||||||
|---|---|---|---|---|---|---|---|---|
| Positional Coordinates | Positional Coordinates | |||||||
| x | y | z | B (Å2) | x | y | z | B (Å2) | |
| Na1/Ba1 | 0.0000 | 0.2525(4) | 0.7637(7) | 1.98(5) | −0.059(5) | 0.505 (5) | 0.2500 | 2.81(5) |
| Na2/Ba2 | 0.5000 | 0.2514(9) | 0.7691(5) | 0.35(7) | ||||
| Nb/Ti | 0.7507(9) | 0.7480(8) | 0.7925(3) | 0.72(2) | 0.0000 | 0.0000 | 0.0000 | 1.30 (2) |
| O1 | 0.0000 | 0.2185(7) | 0.3217(8) | 1.48(1) | 0.010 (3) | 0.019 (6) | 0.2500 | 1.23 (5) |
| O2 | 0.5000 | 0.3109(9) | 0.2986(9) | 1.08(8) | 0.281(7) | 0.307 (4) | 0.039 (3) | 1.557(2) |
| O3 | 0.2265(8) | 0.4482(6) | 0.2140(6) | 2.18(8) | ||||
| O4 | 0.2667(6) | −0.086(5) | 0.6128(2) | 1.55(3) | ||||
| Ao = 7.7425(4) Å; Bo = 5.4571(5) Å; Co = 5.5018(5) Å, Unit cell volume (V) = 232.46(9) Å3 Rp = 3.68 Rwp = 6.61; Rexp = 5.45; χ2 = 1.22 | Ao = 5.2147(7) Å; Bo = 5.3295(6) Å; Co = 7.3933(5) Å, Unit cell volume (V) = 205.41(9) Å3 Rp = 5.68 Rwp = 8.03; Rexp = 7.65; χ2 = 1.10 | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, S.K.; Garg, N.; Gohil, S.; Mittal, R.; Chaplot, S.L. High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate. Crystals 2023, 13, 1181. https://doi.org/10.3390/cryst13081181
Mishra SK, Garg N, Gohil S, Mittal R, Chaplot SL. High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate. Crystals. 2023; 13(8):1181. https://doi.org/10.3390/cryst13081181
Chicago/Turabian StyleMishra, Sanjay Kumar, Nandini Garg, Smita Gohil, Ranjan Mittal, and Samrath Lal Chaplot. 2023. "High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate" Crystals 13, no. 8: 1181. https://doi.org/10.3390/cryst13081181
APA StyleMishra, S. K., Garg, N., Gohil, S., Mittal, R., & Chaplot, S. L. (2023). High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate. Crystals, 13(8), 1181. https://doi.org/10.3390/cryst13081181

