Controllable Synthesis and Surface Modifications of a Metastable O2-Type Li-Rich Cathode Material
Abstract
:1. Introduction
2. Experimental Section
2.1. Material Preparation
2.1.1. Preparation of the Precursors Nax[Li0.25Ni0.1Co0.05Mn0.6]O2 (NLNCM) via the Sol-Gel Method
2.1.2. Preparation of the O2-Type Li-Rich Cathode Material LLNCM via the Molten Salt Ion Exchange Method
2.1.3. Al2O3 Coating of the O2-Type Li-Rich Cathode Material LLNCM
2.2. Materials Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, R.; Miao, C.; Nie, Y.; Wang, D.; Xiao, W.; Xu, M.; Wang, C. Degradation mechanism and performance enhancement strategies of LiNixCoyAl1−x−yO2 (x ≥ 0.8) cathodes for rechargeable lithium-ion batteries: A review. Ionics 2020, 26, 3199–3214. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Ni, Y.; Zhang, K.; Cheng, F.; Chen, J. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 2020, 43, 132–165. [Google Scholar] [CrossRef]
- Teichert, P.; Eshetu, G.G.; Jahnke, H.; Figgemeier, E. Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries. Batteries 2020, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Ren, K.; He, M.; Dong, W.; Xiao, W.; Pan, H.; Yang, J.; Yang, Y.; Liu, P.; Cao, Z.; et al. Synthesis and Manipulation of Single-Crystalline Lithium Nickel Manganese Cobalt Oxide Cathodes: A Review of Growth Mechanism. Front. Chem. 2020, 8, 747. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.; Tripković, Đ.; Kretschmer, K.; Bianchini, M.; Brezesinski, T. Surface Modification Strategies for Improving the Cycling Performance of Ni-Rich Cathode Materials. Eur. J. Inorg. Chem. 2020, 33, 3117–3130. [Google Scholar] [CrossRef]
- Zuo, Y.; Ma, J.; Jiang, N.; Xia, D. Effects of Particle Size on Voltage Fade for Li-Rich Mn-Based Layered Oxides. ACS Omega 2018, 3, 11136–11143. [Google Scholar] [CrossRef]
- Yu, Z.; Ning, F.; Shang, H.; Song, J.; Yao, T.; Sun, Z.; Chu, W.; Xia, D. Relationship between Voltage Hysteresis and Voltage Decay in Lithium-Rich Layered Oxide Cathodes. J. Phys. Chem. C 2021, 125, 16913–16920. [Google Scholar] [CrossRef]
- Zhang, K.; Jiang, Z.; Ning, F.; Li, B.; Shang, H.; Song, J.; Zuo, Y.; Yang, T.; Feng, G.; Ai, X.; et al. Metal-Ligand π Interactions in Lithium-Rich Li2RhO3 Cathode Material Activate Bimodal Anionic Redox. Adv. Energy Mater. 2021, 11, 2100892. [Google Scholar] [CrossRef]
- Zhang, K.; Qi, J.; Song, J.; Zuo, Y.; Yang, Y.; Yang, T.; Chen, T.; Liu, X.; Chen, L.; Xia, D. Sulfuration of Li-Rich Mn-Based Cathode Materials for Multianionic Redox and Stabilized Coordination Environment. Adv. Mater. 2022, 34, e2109564. [Google Scholar] [CrossRef]
- Zuo, Y.; Shang, H.; Hao, J.; Song, J.; Ning, F.; Zhang, K.; He, L.; Xia, D. Regulating the Potential of Anion Redox to Reduce the Voltage Hysteresis of Li-Rich Cathode Materials. J. Am. Chem. Soc. 2023, 145, 5174–5182. [Google Scholar] [CrossRef]
- Ning, F.; Li, B.; Song, J.; Zuo, Y.; Shang, H.; Zhao, Z.; Yu, Z.; Chu, W.; Zhang, K.; Feng, G.; et al. Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability. Nat. Commun. 2020, 11, 4973. [Google Scholar] [CrossRef]
- Song, J.; Li, B.; Chen, Y.; Zuo, Y.; Ning, F.; Shang, H.; Feng, G.; Liu, N.; Shen, C.; Ai, X.; et al. A High-Performance Li-Mn-O Li-rich Cathode Material with Rhombohedral Symmetry via Intralayer Li/Mn Disordering. Adv. Mater. 2020, 32, e2000190. [Google Scholar] [CrossRef]
- Song, J.; Ning, F.; Zuo, Y.; Li, A.; Wang, H.; Zhang, K.; Yang, T.; Yang, Y.; Gao, C.; Xiao, W.; et al. Entropy Stabilization Strategy for Enhancing the Local Structural Adaptability of Li-Rich Cathode Materials. Adv. Mater. 2023, 35, e2208726. [Google Scholar] [CrossRef]
- Jarvis, K.A.; Deng, Z.; Allard, L.F.; Manthiram, A.; Ferreira, P.J. Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution. Chem. Mater. 2011, 23, 3614–3621. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Kang, S.H.; Johnson, C.S.; Vaughey, J.T.; Hackney, S.A. Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem. Commun. 2006, 8, 1531–1538. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Z.; Liu, S.; Wang, B.; Liu, J.; Ren, Y.; Zhang, X.; Zhao, S.; Liu, D.; Yu, H. Cation configuration in transition-metal layered oxides. Matter 2022, 5, 3869–3882. [Google Scholar] [CrossRef]
- Yin, X.; Li, D.; Hao, L.; Wang, Y.; Wang, Y.; Guo, X.; Zhao, S.; Wang, B.; Wu, L.; Yu, H. A high-energy all-solid-state lithium metal battery with "single-crystal" lithium-rich layered oxides. Chem. Commun. 2023, 59, 639–642. [Google Scholar] [CrossRef]
- Yu, H.; So, Y.G.; Kuwabara, A.; Tochigi, E.; Shibata, N.; Kudo, T.; Zhou, H.; Ikuhara, Y. Crystalline Grain Interior Configuration Affects Lithium Migration Kinetics in Li-Rich Layered Oxide. Nano Lett. 2016, 16, 2907–2915. [Google Scholar] [CrossRef]
- Yu, H.; So, Y.G.; Ren, Y.; Wu, T.; Guo, G.; Xiao, R.; Lu, J.; Li, H.; Yang, Y.; Zhou, H.; et al. Temperature-Sensitive Structure Evolution of Lithium-Manganese-Rich Layered Oxides for Lithium-Ion Batteries. J. Am. Chem. Soc. 2018, 140, 15279–15289. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, S.; Wang, B.; Yu, H. Local Redox Reaction of High Valence Manganese in Li2MnO3-Based Lithium Battery Cathodes. Cell Rep. Phys. Sci. 2020, 1, 100061. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Liang, Y.; Han, Z.; Liu, S.; Chu, W.; Yu, H. Interphase Engineering by Electrolyte Additives for Lithium-Rich Layered Oxides: Advances and Perspectives. ACS Energy Lett. 2021, 6, 2552–2564. [Google Scholar] [CrossRef]
- Zubair, M.; Li, G.; Wang, B.; Wang, L.; Yu, H. Electrochemical Kinetics and Cycle Stability Improvement with Nb Doping for Lithium-Rich Layered Oxides. ACS Appl. Energy Mater. 2018, 2, 503–512. [Google Scholar] [CrossRef]
- Zubair, M.; Wang, L.; Wang, Y.; Zhang, X.; Guo, X.; Wu, T.; Wang, E.; Wang, B.; Yang, Y.; Yu, H. High-Temperature Electrochemical Performance Enhancement of Lithium-Rich Layered Oxides by Surface Modification. ACS Appl. Energy Mater. 2020, 3, 4888–4895. [Google Scholar] [CrossRef]
- Cao, X.; Li, H.; Qiao, Y.; Jia, M.; He, P.; Cabana, J.; Zhou, H. Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Mater. 2021, 38, 1–8. [Google Scholar] [CrossRef]
- Cao, X.; Qiao, Y.; Jia, M.; He, P.; Zhou, H. Ion-Exchange: A Promising Strategy to Design Li-Rich and Li-Excess Layered Cathode Materials for Li-Ion Batteries. Adv. Energy Mater. 2021, 12, 2003972. [Google Scholar] [CrossRef]
- Cao, X.; Sun, J.; Chang, Z.; Wang, P.; Yue, X.; Okagaki, J.; He, P.; Yoo, E.; Zhou, H. Enabling Long-Term Cycling Stability within Layered Li-Rich Cathode Materials by O2/O3-Type Biphasic Design Strategy. Adv. Funct. Mater. 2022, 32, 2205199. [Google Scholar] [CrossRef]
- Cui, C.; Fan, X.; Zhou, X.; Chen, J.; Wang, Q.; Ma, L.; Yang, C.; Hu, E.; Yang, X.Q.; Wang, C. Structure and Interface Design Enable Stable Li-Rich Cathode. J. Am. Chem. Soc. 2020, 142, 8918–8927. [Google Scholar] [CrossRef]
- Eum, D.; Jang, H.-Y.; Kim, B.; Chung, J.; Kim, D.; Cho, S.-P.; Song, S.H.; Kang, S.; Yu, S.; Park, S.-O.; et al. Effects of cation superstructure ordering on oxygen redox stability in O2-type lithium-rich layered oxides. Energy Environ. Sci. 2023, 16, 673–686. [Google Scholar] [CrossRef]
- Luo, Y.-h.; Pan, Q.-l.; Wei, H.-x.; Huang, Y.-d.; Tang, L.-b.; Wang, Z.-y.; Yan, C.; Mao, J.; Dai, K.-h.; Wu, Q.; et al. Fundamentals of Ion-Exchange Synthesis and Its Implications in Layered Oxide Cathodes: Recent Advances and Perspective. Adv. Energy Mater. 2023, 13, 2300125. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S. New O2/P2-type Li-Excess Layered Manganese Oxides as Promising Multi-Functional Electrode Materials for Rechargeable Li/Na Batteries. Adv. Energy Mater. 2014, 4, 1301453. [Google Scholar] [CrossRef]
- Zhang, K.; Li, B.; Zuo, Y.; Song, J.; Shang, H.; Ning, F.; Xia, D. Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials. Electrochem. Energy Rev. 2019, 2, 606–623. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, B.; Jiang, N.; Chu, W.; Zhang, H.; Zou, R.; Xia, D. A High-Capacity O2-Type Li-Rich Cathode Material with a Single-Layer Li(2) MnO(3) Superstructure. Adv. Mater. 2018, 30, e1707255. [Google Scholar] [CrossRef]
- Lu, G.; Li, X.; Wang, Z.; Song, D.; Zhang, H.; Li, C.; Zhang, L.; Zhu, L. Enhanced electrochemical performances of LiCoO2 cathode for all-solid-state lithium batteries by regulating crystallinity and composition of coating layer. J. Power Sources 2020, 468, 228372. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, J.; Cheng, F.; Wan, W.; Liu, W.; Zhou, H.; Zhang, X. A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process. J. Power Sources 2010, 195, 8267–8274. [Google Scholar] [CrossRef]
- Delmas, C.; Braconnier, J.-J.; Hagenmuller, P. A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction. Mater. Res. Bull. 1982, 17, 117–123. [Google Scholar] [CrossRef]
- Hou, P.; Sun, Y.; Li, F.; Sun, Y.; Deng, X.; Zhang, H.; Xu, X.; Zhang, L. A high energy-density P2-Na(2/3)[Ni(0.3)Co(0.1)Mn(0.6)]O(2) cathode with mitigated P2-O2 transition for sodium-ion batteries. Nanoscale 2019, 11, 2787–2794. [Google Scholar] [CrossRef]
- Yuan, S.; Guo, J.; Ma, Y.; Zhang, H.; Song, D.; Shi, X.; Zhang, L. Boosting the Electrochemical Performance of a Spinel Cathode with the In Situ Transformed Allogenic Li-Rich Layered Phase. Langmuir 2021, 37, 13941–13951. [Google Scholar] [CrossRef]
Sample | Rs (Ω) | Rct (Ω) |
---|---|---|
LLNCM-30 | 7.033 | 30.03 |
LLNCM@Al2O3-30 | 9.219 | 14.41 |
LLNCM-50 | 7.119 | 36.38 |
LLNCM@Al2O3-50 | 6.36 | 15.98 |
LLNCM-100 | 7.658 | 87.26 |
LLNCM@Al2O3-100 | 6.859 | 27.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Huang, J.; Zhang, H.; Zhang, L.; Wang, D. Controllable Synthesis and Surface Modifications of a Metastable O2-Type Li-Rich Cathode Material. Crystals 2023, 13, 1154. https://doi.org/10.3390/cryst13081154
Sun Y, Huang J, Zhang H, Zhang L, Wang D. Controllable Synthesis and Surface Modifications of a Metastable O2-Type Li-Rich Cathode Material. Crystals. 2023; 13(8):1154. https://doi.org/10.3390/cryst13081154
Chicago/Turabian StyleSun, Yiming, Junjie Huang, Hongzhou Zhang, Lianqi Zhang, and Defa Wang. 2023. "Controllable Synthesis and Surface Modifications of a Metastable O2-Type Li-Rich Cathode Material" Crystals 13, no. 8: 1154. https://doi.org/10.3390/cryst13081154
APA StyleSun, Y., Huang, J., Zhang, H., Zhang, L., & Wang, D. (2023). Controllable Synthesis and Surface Modifications of a Metastable O2-Type Li-Rich Cathode Material. Crystals, 13(8), 1154. https://doi.org/10.3390/cryst13081154