Influence of Temperature on the Growth of Vertically Aligned ZnO Nanowires in Wet Oxygen Environment
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Deposition and Formation of Zn Seed Layer
2.2. Growth of Nanowires/Nanorods
2.3. Characterization
3. Results and Discussions
3.1. Structural Properties
3.2. Optical Properties
3.3. Morphology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, K.M.; Benitto, J.J.; Vijaya, J.J.; Bououdina, M. Recent Advances in ZnO-Based Nanostructures for the Photocatalytic Degradation of Hazardous, Non-Biodegradable Medicines. Crystals 2023, 13, 329. [Google Scholar] [CrossRef]
- Sheikhi, S.; Aliannezhadi, M.; Tehrani, F.S. The effect of PEGylation on optical and structural properties of ZnO nanostructures for photocatalyst and photodynamic applications. Mater. Today Commun. 2023, 34, 105103. [Google Scholar] [CrossRef]
- Subhan, M.A.; Neogi, N.; Choudhury, K.P. Industrial Manufacturing Applications of Zinc Oxide Nanomaterials: A Comprehensive Study. Nanomanufacturing 2022, 2, 265–291. [Google Scholar] [CrossRef]
- Alnaim, N.; Kumar, S.; Alshoaibi, A. Structural, Morphological, Electronic Structural, Optical, and Magnetic Properties of ZnO Nanostructures. Materials 2022, 15, 8889. [Google Scholar] [CrossRef] [PubMed]
- Bettini, S.; Pagano, R.; Valli, D.; Ingrosso, C.; Roeffaers, M.; Hofkens, J.; Giancane, G.; Valli, L. ZnO nanostructures based piezo-photocatalytic degradation enhancement of steroid hormones. Surf. Interfaces 2023, 36, 102581. [Google Scholar] [CrossRef]
- Chia Ying, L.; Seu Yi, L.; Pang, L.; Tseung-Yuen, T. Field-emission triode of low-temperature synthesized ZnO nanowires. IEEE Trans. Nanotechnol. 2006, 5, 216–219. [Google Scholar] [CrossRef]
- ElZein, B.; Elrashidi, A.; Dogheche, E.; Jabbour, G. Analyzing the Mechanism of Zinc Oxide Nanowires Bending and Bundling Induced by Electron Beam under Scanning Electron Microscope Using Numerical and Simulation Analysis. Materials 2022, 15, 5358. [Google Scholar] [CrossRef]
- Hüpkes, J.; Rech, B.; Calnan, S.; Kluth, O.; Zastrow, U.; Siekmann, H.; Wuttig, M. Material study on reactively sputtered zinc oxide for thin film silicon solar cells. Thin Solid Film. 2006, 502, 286–291. [Google Scholar] [CrossRef]
- Kadinskaya, S.A.; Kondratev, V.M.; Kindyushov, I.K.; Koval, O.Y.; Yakubovsky, D.I.; Kusnetsov, A.; Lihachev, A.I.; Nashchekin, A.V.; Akopyan, I.K.; Serov, A.Y.; et al. Deep-Level Emission Tailoring in ZnO Nanostructures Grown via Hydrothermal Synthesis. Nanomaterials 2023, 13, 58. [Google Scholar] [CrossRef]
- Noman, M.T.; Amor, N.; Petru, M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2022, 47, 99–141. [Google Scholar] [CrossRef]
- Liu, C.H.; Zapien, J.A.; Yao, Y.; Meng, X.M.; Lee, C.S.; Fan, S.S.; Lifshitz, Y.; Lee, S.T. High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays. Adv. Mater. 2003, 15, 838–841. [Google Scholar] [CrossRef]
- Taghizadeh, S.-M.; Lal, N.; Ebrahiminezhad, A.; Moeini, F.; Seifan, M.; Ghasemi, Y.; Berenjian, A. Green and Economic Fabrication of Zinc Oxide (ZnO) Nanorods as a Broadband UV Blocker and Antimicrobial Agent. Nanomaterials 2020, 10, 530. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, C.; Xu, S.; Li, C.; Wu, W.; Wang, Z.L. Planar Waveguide−Nanowire Integrated Three-Dimensional Dye-Sensitized Solar Cells. Nano Lett. 2010, 10, 2092–2096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Xu, P.; Zhu, Y.; Chen, X.; Yu, W. Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance. Nanotechnology 2010, 21, 285501. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, A.F.; Ahmed, S.M.; Barzinjy, A.A.; Hamad, S.M.; Ahmed, N.M.; Almessiere, M.A. Fabrication and Characterization of High-Quality UV Photodetectors Based ZnO Nanorods Using Traditional and Modified Chemical Bath Deposition Methods. Nanomaterials 2021, 11, 677. [Google Scholar] [CrossRef] [PubMed]
- Lebepe, T.C.; Parani, S.; Oluwafemi, O.S. Graphene Oxide-Coated Gold Nanorods: Synthesis and Applications. Nanomaterials 2020, 10, 2149. [Google Scholar] [CrossRef]
- Manabeng, M.; Mwankemwa, B.S.; Ocaya, R.O.; Motaung, T.E.; Malevu, T.D. A Review of the Impact of Zinc Oxide Nanostructure Morphology on Perovskite Solar Cell Performance. Processes 2022, 10, 1803. [Google Scholar] [CrossRef]
- Aspoukeh, P.K.; Barzinjy, A.A.; Hamad, S.M. Synthesis, properties and uses of ZnO nanorods: A mini review. Int. Nano Lett. 2022, 12, 153–168. [Google Scholar] [CrossRef]
- ElZein, B.; Yao, Y.; Barham, A.S.; Dogheche, E.; Jabbour, G.E. Toward the Growth of Self-Catalyzed ZnO Nanowires Perpendicular to the Surface of Silicon and Glass Substrates, by Pulsed Laser Deposition. Materials 2020, 13, 4427. [Google Scholar] [CrossRef]
- Greene, L.E.; Yuhas, B.D.; Law, M.; Zitoun, D.; Yang, P. Solution-Grown Zinc Oxide Nanowires. Inorg. Chem. 2006, 45, 7535–7543. [Google Scholar] [CrossRef]
- Harish, V.; Ansari, M.M.; Tewari, D.; Gaur, M.; Yadav, A.B.; García-Betancourt, M.-L.; Abdel-Haleem, F.M.; Bechelany, M.; Barhoum, A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials 2022, 12, 3226. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.W.; Norton, D.P.; Tien, L.C.; Kwon, Y.; Kang, B.S.; Ren, F.; Pearton, S.J.; LaRoche, J.R. ZnO nanowire growth and devices. Mater. Sci. Eng. R Rep. 2004, 47, 1–47. [Google Scholar] [CrossRef]
- Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef]
- Zhou, X.-Q.; Hayat, Z.; Zhang, D.-D.; Li, M.-Y.; Hu, S.; Wu, Q.; Cao, Y.-F.; Yuan, Y. Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture. Processes 2023, 11, 1193. [Google Scholar] [CrossRef]
- Kong, X.Y.; Wang, Z.L. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts. Nano Lett. 2003, 3, 1625–1631. [Google Scholar] [CrossRef]
- Li, Z.W.; Gao, W.; Reeves, R.J. Zinc oxide films by thermal oxidation of zinc thin films. Surf. Coat. Technol. 2005, 198, 319–323. [Google Scholar] [CrossRef]
- Slimani Tlemcani, T.; Justeau, C.; Nadaud, K.; Poulin-Vittrant, G.; Alquier, D. Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowires. Chemosensors 2019, 7, 7. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Chen, M.; Yu, X.; Chang, Y.; Chen, A.; Zhu, H.; Tang, Z. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition. Phys. Lett. A 2016, 380, 3993–3997. [Google Scholar] [CrossRef]
- Farhat, O.F.; Halim, M.M.; Abdullah, M.J.; Ali, M.K.M.; Ahmed, N.M.; Bououdina, M. Fabrication and characterization of ZnO nanowires by wet oxidation of Zn thin film deposited on Teflon substrate. Superlattices Microstruct. 2015, 86, 236–242. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, R.B.; Fan, D.H. Study on synthesis and optical properties of Al-doped ZnO hierarchical nanostructures. AIP Adv. 2011, 1, 012107. [Google Scholar] [CrossRef]
- Devika, M.; Koteeswara Reddy, N.; Kang, J.W.; Park, S.J.; Tu, C.W. Growth and Characterization of Vertically Aligned ZnO Hierarchical Nanostructures. ECS Solid State Lett. 2013, 2, P101. [Google Scholar] [CrossRef]
- Xu, C.H.; Lui, H.F.; Surya, C. Synthetics of ZnO nanostructures by thermal oxidation in water vapor containing environments. Mater. Lett. 2011, 65, 27–30. [Google Scholar] [CrossRef]
- Li, Z.W.; Gao, W. Growth of zinc oxide thin films and nanostructures by wet oxidation. Thin Solid Film. 2007, 515, 3323–3329. [Google Scholar] [CrossRef]
- Chen, R.; Zou, C.; Yan, X.; Alyamani, A.; Gao, W. Growth mechanism of ZnO nanostructures in wet-oxidation process. Thin Solid Film. 2011, 519, 1837–1844. [Google Scholar] [CrossRef]
- Chen, R.-q.; Zou, C.-w.; Yan, X.-d.; Gao, W. Zinc oxide nanostructures and porous films produced by oxidation of zinc precursors in wet-oxygen atmosphere. Prog. Nat. Sci. Mater. Int. 2011, 21, 81–96. [Google Scholar] [CrossRef]
- Gao, W.; Li, Z.W. Wet oxidation: A promising way for fabrication of Zinc Oxide nanostructures. Mater. Sci. Forum 2006, 522–523, 277–284. [Google Scholar] [CrossRef]
- Meier, N.B.G.H.; Pettit, F.S. Introduction to the High Temperature Oxidation of Metals, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Cha, S.N.; Song, B.G.; Jang, J.E.; Jung, J.E.; Han, I.T.; Ha, J.H.; Hong, J.P.; Kang, D.J.; Kim, J.M. Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer. Nanotechnology 2008, 19, 235601. [Google Scholar] [CrossRef]
- Water, W.; Fang, T.-H.; Ji, L.-W.; Lee, C.-C. Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires. Mater. Sci. Eng. B 2009, 158, 75–78. [Google Scholar] [CrossRef]
- Petersen, E.W.; Likovich, E.M.; Russell, K.J.; Narayanamurti, V. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles. Nanotechnology 2009, 20, 405603. [Google Scholar] [CrossRef]
- Red’kin, A.N.; Gruzintsev, A.N.; Yakimov, E.E.; Kononenko, O.V.; Roshchupkin, D.V. Vapor-phase synthesis of aligned zinc oxide nanorod arrays on various substrates. Inorg. Mater. 2011, 47, 740–745. [Google Scholar] [CrossRef]
- Kang, Y.-H.; Choi, C.-G.; Kim, Y.-S.; Kim, J.-K. Influence of seed layers on the vertical growth of ZnO nanowires. Mater. Lett. 2009, 63, 679–682. [Google Scholar] [CrossRef]
- Song, W.Y.; Yang, J.H.; Dinh, D.V.; Shin, T.I.; Kang, S.M.; Kim, S.W.; Yoon, D.H. Vertical growth of ZnO nanowires on c-Al2O3 substrate by controlling ramping rate in a vapor-phase epitaxy method. J. Phys. Chem. Solids 2008, 69, 1486–1490. [Google Scholar] [CrossRef]
- Fatimah Hasim, S.N.; Abdul Hamid, M.A.; Shamsudin, R.; Jalar, A. Synthesis and characterization of ZnO thin films by thermal evaporation. J. Phys. Chem. Solids 2009, 70, 1501–1504. [Google Scholar] [CrossRef]
- Kim, H.W.; Kebede, M.A.; Kim, H.S.; Srinivasa, B.; Kim, D.Y.; Park, J.Y.; Kim, S.S. Effect of growth temperature on the ZnO nanowires prepared by thermal heating of Zn powders. Curr. Appl. Phys. 2010, 10, 52–56. [Google Scholar] [CrossRef]
- Zha, M.; Calestani, D.; Zappettini, A.; Mosca, R.; Mazzera, M.; Lazzarini, L.; Zanotti, L. Large-area self-catalysed and selective growth of ZnO nanowires. Nanotechnology 2008, 19, 325603. [Google Scholar] [CrossRef]
- Khokhra, R.; Bharti, B.; Lee, H.-N.; Kumar, R. Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method. Sci. Rep. 2017, 7, 15032. [Google Scholar] [CrossRef]
Parameter | Nanowire Growth |
---|---|
Substrate | Si (n-type) (100) |
Nucleation mater | Zinc |
Gas flow | Oxygen |
Growth temperature | 650 °C, 750 °C, 850 °C |
Growth rate | 30 °C/min |
Growth Pressure | atmospheric |
Precursor Used | Substrate | Carrier Gas | Time | Nanostructure | Ref. |
---|---|---|---|---|---|
ZnO + Graphite (950 °C) | Si + SiO2+ Zn SL | Ar + O2 | 1 h | NWs | [39] |
Zn (600 °C) | Si + Au (20 nm) | Ar + O2 | -- | NWs randomly oriented | [40] |
ZnO + graphite (975 °C) | Ti, Mo foil + Au | Ar + O2 | 45 min | NWs randomly oriented | [41] |
Zn (620–630 °C) | Si(100), Si(111), Glass | Ar + O2 | 40 min | NWs | [42] |
ZnO + graphite (930 °C) | SiO2, Au, ZnO, Au/ZnO | Ar | 30 min | Nws randomly oriented | [43] |
ZnO + graphite (950 °C) | c-Al2-O3 +Au | Ar | 1 h | Nws | [44] |
Zn (900 °C) | Si | Ar + O2 | 30 min | Tetrapods | [45] |
Zn (900–1050 °C) | Si + Au | N2 | 1 h | NWs randomly oriented | [46] |
Zn (650 °C) | Alumina + Zn | Ar + O2 | 30 min | NWs | [47] |
Temperature in °C | Planes | |||||||
---|---|---|---|---|---|---|---|---|
100 | 002 | 101 | 102 | 110 | 103 | 200 | 112 | |
650 | 31.60° | 34.5° | 36.33° | - | - | - | 66.42° | - |
750 | 31.76° | 34.44° | 36.25° | 47.60° | 56.50° | 62.80° | - | 67.90° |
850 | 31.80° | 34.45° | 36.27° | - | - | - | 66.35° | - |
T = 650 °C | T = 750 °C | T = 850 °C | |
---|---|---|---|
UV emission peak values (nm) | 382.43 | 381.6 | 384 |
Visible emission peak values (nm) | 471 | 471 | 471 |
UV/Visible intensity ratio | 2.176 | 2.22 | 0.955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ElZein, B.; Salah, N.; Barham, A.S.; Elrashidi, A.; Al Khatab, M.; Jabbour, G. Influence of Temperature on the Growth of Vertically Aligned ZnO Nanowires in Wet Oxygen Environment. Crystals 2023, 13, 876. https://doi.org/10.3390/cryst13060876
ElZein B, Salah N, Barham AS, Elrashidi A, Al Khatab M, Jabbour G. Influence of Temperature on the Growth of Vertically Aligned ZnO Nanowires in Wet Oxygen Environment. Crystals. 2023; 13(6):876. https://doi.org/10.3390/cryst13060876
Chicago/Turabian StyleElZein, Basma, Numan Salah, Ahmad S. Barham, Ali Elrashidi, Mohammed Al Khatab, and Ghassan Jabbour. 2023. "Influence of Temperature on the Growth of Vertically Aligned ZnO Nanowires in Wet Oxygen Environment" Crystals 13, no. 6: 876. https://doi.org/10.3390/cryst13060876
APA StyleElZein, B., Salah, N., Barham, A. S., Elrashidi, A., Al Khatab, M., & Jabbour, G. (2023). Influence of Temperature on the Growth of Vertically Aligned ZnO Nanowires in Wet Oxygen Environment. Crystals, 13(6), 876. https://doi.org/10.3390/cryst13060876