Purification and Improved Photoelectric Properties of Lead-Free Perovskite Cs3Bi2Br9 Crystals
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.H.; Xiao, B.; Ji, L.L.; Zhao, D.; Liu, J.J.; Zhang, W.; Zhu, M.H.; Jie, W.Q.; Zhang, B.B.; Xu, Y.D. Effect of dimensional expansion on carrier transport behaviors of the hexagonal Bi-based perovskite crystals. J. Energy Chem. 2022, 66, 459–465. [Google Scholar] [CrossRef]
- Tie, S.; Dong, S.; Yuan, R.; Cai, B.; Zhu, J.; Zheng, X. Halide perovskites for sensitive, stable and scalable X-ray detection and imaging. Chem. Commun. 2023, 59, 5016–5029. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Ahmad, K.; Mobin, S.M. Improved photovoltaic performance of Pb-free AgBi2I7 based photovoltaics. Nanoscale Adv. 2023, 5, 1624–1630. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jia, M.C.; Xu, W.; Pan, G.C.; Zhu, J.Y.; Tian, Y.T.; Wu, D.; Li, X.J.; Shi, Z.F. Recent progress and challenges of bismuth-based halide perovskites for emerging optoelectronic applications. Adv. Opt. Mater. 2023, 11, 2202153. [Google Scholar] [CrossRef]
- Liu, Y.J.; Gao, Y.X.; Zhi, J.Y.; Huang, R.Q.; Li, W.J.; Huang, X.Y.; Yan, G.H.; Ji, Z.; Mai, W.J. All-inorganic lead-free NiOx/Cs3Bi2Br9 perovskite heterojunction photodetectors for ultraviolet multispectral imaging. Nano Res. 2022, 15, 1094–1101. [Google Scholar] [CrossRef]
- Zhang, X.N.; Liu, X.Y.; Sun, B.; Ye, H.B.; He, C.H.; Kong, L.X.; Li, G.L.; Liu, Z.Y.; Liao, G.L. Ultrafast, self-powered, and charge-transport-layer-free ultraviolet photodetectors based on sequentially vacuum-evaporated lead-free Cs2AgBiBr6 thin films. ACS Appl. Mater. Interfaces 2021, 13, 35949–35960. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, W.; Cui, W.; Jiang, W.; Zhao, M.; Sun, J.; Liu, B.; Lai, X.; Shi, K.; Pan, K. Improved optical properties of lead-free double perovskite Cs2AgBiBr6 nanocrystals via Na ions doping. Adv. Opt. Mater. 2023, 11, 2202745. [Google Scholar] [CrossRef]
- Tran, M.N.; Cleveland, I.J.; Aydil, E.S. Reactive physical vapor deposition of Yb-doped lead-free double perovskite Cs2AgBiBr6 with 95% photoluminescence quantum yield. ACS Appl. Electron. Mater. 2022, 4, 4588–4594. [Google Scholar] [CrossRef]
- Toufanian, R.; Swain, S.; Becla, P.; Motakef, S.; Datta, A. Cesium lead bromide semiconductor radiation detectors: Crystal growth, detector performance and polarization. J. Mater. Chem. C 2022, 10, 12708–12714. [Google Scholar] [CrossRef]
- Oliveira, I.B.; Costa, F.E.; Chubaci, J.F.D.; Hamada, M.M. Purification and preparation of TlBr crystals for room temperature radiation detector applications. IEEE Trans. Nucl. Sci. 2004, 51, 1224–1228. [Google Scholar] [CrossRef]
- Hayashi, T.; Kinpara, M.; Wang, J.F.; Mimura, K.; Isshiki, M. Growth of ultra-high purity PbI2 single crystal: (1) Preparation of high purity PbI2. Cryst. Res. Technol. 2008, 43, 9–13. [Google Scholar] [CrossRef]
- Zheng, Z.P.; Meng, F.; Gong, S.P.; Quan, L.; Wang, J.; Zhou, D.X. An effective method for thallium bromide purification and research on crystal properties. Nucl. Instrum. Meth. A 2012, 676, 26–31. [Google Scholar] [CrossRef]
- Kwon, O.; Song, Y.; Woo, S.G.; Park, W.; Cho, B. Physical vapor transport process for highly purified Hg2Br2 crystal: From powder purification to crystal growth. Korean J. Met. Mater. 2022, 60, 551–556. [Google Scholar] [CrossRef]
- Dos Santos, R.A.; de Mesquita, C.H.; da Silva, J.B.R.; Ferraz, C.D.; da Costa, F.E.; Martins, J.F.T.; Gennari, R.F.; Hamada, M.M. Influence of impurities on the radiation response of the TlBr semiconductor crystal. Adv. Mater. Sci. Eng. 2017, 2017, 1750517. [Google Scholar] [CrossRef][Green Version]
- Yu, S.J.; Zhou, D.X.; Gong, S.P.; Zheng, Z.P.; Hu, Y.X.; Wang, C.; Quan, L. Purification and optical properties of TlBr crystals. Nucl. Instrum. Meth. A 2009, 602, 484–488. [Google Scholar] [CrossRef]
- Lin, W.W.; Liu, Z.F.; Stoumpos, C.C.; Das, S.; He, Y.H.; Hadar, I.; Peters, J.A.; McCall, K.M.; Xu, Y.D.; Chung, D.Y.; et al. Purification and improved nuclear radiation detection of Tl6SI4 semiconductor. Cryst. Growth Des. 2019, 19, 4738–4744. [Google Scholar] [CrossRef]
- Li, X.; Du, X.Y.; Zhang, P.; Hua, Y.Q.; Liu, L.; Niu, G.D.; Zhang, G.D.; Tang, J.; Tao, X.T. Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection. Sci. China Mater. 2021, 64, 1427–1436. [Google Scholar] [CrossRef]
- Alshogeathri, S.; Cao, D.; Kim, D.; Yang, G. Gel growth and characterization of Cs3Bi2Br9 perovskite single crystals for radiation detection. Front. Phys. 2023, 11, 1129301. [Google Scholar] [CrossRef]
- Cubicciotti, D.; Keneshea, F., Jr. The vapor pressures of BiBr3 over liquid Bi–BiBr3 solutions. J. Phys. Chem. 1958, 62, 999–1002. [Google Scholar] [CrossRef]
- Yin, L.; Wu, H.; Pan, W.; Yang, B.; Li, P.; Luo, J.; Niu, G.; Tang, J. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X-ray detection. Adv. Opt. Mater. 2019, 7, 1900491. [Google Scholar] [CrossRef]
- Cheng, J.P.; Gao, S.Q.; Zhang, P.P.; Wang, B.Q.; Wang, X.C.; Liu, F. Influence of crystallinity of CuCo2S4 on its supercapacitive behavior. J. Alloys Compd. 2020, 825, 153984. [Google Scholar] [CrossRef]
- McCall, K.M.; Friedrich, D.; Chica, D.G.; Cai, W.; Stoumpos, C.C.; Alexander, G.C.B.; Deemyad, S.; Wessels, B.W.; Kanatzidis, M.G. Perovskites with a twist: Strong In1+ off-centering in the mixed-valent CsInX3 (X = Cl, Br). Chem. Mater. 2019, 31, 9554–9566. [Google Scholar] [CrossRef]
- Schlesinger, T.E.; Toney, J.E.; Yoon, H.; Lee, E.Y.; Brunett, B.A.; Franks, L.; James, R.B. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R Rep. 2001, 32, 103–189. [Google Scholar] [CrossRef]
- Wei, S.H.; Zhang, S.B. Chemical trends of defect formation and doping limit in II–VI semiconductors: The case of CdTe. Phys. Rev. B 2002, 66, 155211. [Google Scholar] [CrossRef]
- Gul, R.; Roy, U.N.; James, R.B. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers. J. Appl. Phys. 2017, 121, 115701. [Google Scholar] [CrossRef]
- Shen, H.; Nan, R.; Jian, Z.; Li, X. Defect step controlled growth of perovskite MAPbBr3 single crystal. J. Mater. Sci. 2019, 54, 11596–11603. [Google Scholar] [CrossRef]
- Nan, W.; Yang, D.; Zhou, B.; Fu, Q.; Yu, H.; Hu, Z.; Wang, J.; Wu, Y. Growth and characterization of Fe2+:ZnSe single crystals for tunable mid-infrared lasers. J. Cryst. Growth 2023, 614, 127230. [Google Scholar] [CrossRef]
- Khan, H.; Sohail, M.; Rahman, N.; Khan, R.; Hussain, M.; Ullah, A.; Khan, A.; Alataway, A.; Dewidar, A.Z.; Elansary, H.O.; et al. Computational study of elastic, structural, electronic, and optical properties of GaMF3 (M = Be and Ge) fluoroperovskites, based on density functional theory. Molecules 2022, 27, 5264. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Yao, C.; Qin, N.; Chen, R.; Bao, D. Optoelectronic modulation of interfacial defects in lead-free perovskite films for resistive switching. Adv. Electron. Mater. 2022, 8, 2101094. [Google Scholar] [CrossRef]
- Michaelson, H.B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733. [Google Scholar] [CrossRef][Green Version]
- Li, G.Q.; Jie, W.Q.; Yang, G.; Wang, T. Behaviors of impurities in Cd0.85Zn0.15Te crystals grown by vertical Bridgman method. Mater. Sci. Eng. B 2004, 113, 7–12. [Google Scholar] [CrossRef]
- Khan, R.; Khan, M.I.; Almesfer, M.K.; Elkhaleefa, A.; Ali, I.H.; Ullah, A.; Rahman, N.; Sohail, M.; Khan, A.A.; Khan, A. The structural and dilute magnetic properties of (Co, Li) co-doped-ZnO semiconductor nanoparticles. MRS Commun. 2022, 12, 154–159. [Google Scholar] [CrossRef]
- Sohail, M.; Husain, M.; Rahman, N.; Althubeiti, K.; Algethami, M.; Khan, A.A.; Iqbal, A.; Ullah, A.; Khan, A.; Khan, R. First-principal investigations of electronic, structural, elastic and optical properties of the fluoroperovskite TlLF3 (L = Ca, Cd) compounds for optoelectronic applications. RSC Adv. 2022, 12, 7002–7008. [Google Scholar] [CrossRef] [PubMed]
Element | Before Purification (ppm) | After Purification (ppm) | Element | Before Purification (ppm) | After Purification (ppm) |
---|---|---|---|---|---|
Li | 0.79 | 0.14 | As | 0.09 | 0.16 |
Be | 0.02 | <0.01 | Se | 22.21 | 10.12 |
Na | 1402.32 | 183.38 | Rb | 19.94 | 5.93 |
Mg | 167.11 | 53.71 | Sr | 1.90 | 0.92 |
Al | 138.01 | 26.01 | Y | 0.15 | 0.11 |
P | 5.69 | 9.43 | Zr | 1.83 | 0.58 |
K | 562.58 | 92.81 | Ag | 984.57 | 78.64 |
Ca | 1075.56 | 49.87 | In | 0.02 | 0.03 |
V | 2.22 | 1.54 | Sn | 2.06 | 1.98 |
Cr | 2.25 | 2.70 | Sb | 0.16 | 0.12 |
Mn | 1.19 | 0.87 | I | 36.75 | 14.64 |
Fe | 694.78 | 48.82 | La | 64.30 | 21.43 |
Cu | 1283.29 | 26.45 | Ce | 3.88 | 1.58 |
Zn | 19.51 | 7.11 | Pb | 153.49 | 86.49 |
Ga | 0.50 | 0.15 | Sc | 1.97 | 1.52 |
Element | Position 1 (wt%) | Position 2 (wt%) | Position 3 (wt%) | Position 4 (wt%) | Position 5 (wt%) | Average (wt%) |
---|---|---|---|---|---|---|
C | 4.72 | 9.82 | 6.78 | 5.01 | 9.13 | 7.09 |
O | 0 | 1.46 | 0 | 2.14 | 5.76 | 1.87 |
Cu | 18.19 | 0 | 2.18 | 6.4 | 0.67 | 5.49 |
Ag | 2.75 | 0.23 | 5.64 | 4.66 | 0.9 | 2.84 |
Na | 0 | 0.13 | 0 | 0.27 | 0.18 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, W.; Li, C.; Zhou, B.; Fu, Q.; Li, D.; Yu, H.; Hu, Z.; Wu, Y. Purification and Improved Photoelectric Properties of Lead-Free Perovskite Cs3Bi2Br9 Crystals. Crystals 2023, 13, 871. https://doi.org/10.3390/cryst13060871
Nan W, Li C, Zhou B, Fu Q, Li D, Yu H, Hu Z, Wu Y. Purification and Improved Photoelectric Properties of Lead-Free Perovskite Cs3Bi2Br9 Crystals. Crystals. 2023; 13(6):871. https://doi.org/10.3390/cryst13060871
Chicago/Turabian StyleNan, Weina, Chao Li, Boru Zhou, Qing Fu, Dapeng Li, Hongwei Yu, Zhanggui Hu, and Yicheng Wu. 2023. "Purification and Improved Photoelectric Properties of Lead-Free Perovskite Cs3Bi2Br9 Crystals" Crystals 13, no. 6: 871. https://doi.org/10.3390/cryst13060871
APA StyleNan, W., Li, C., Zhou, B., Fu, Q., Li, D., Yu, H., Hu, Z., & Wu, Y. (2023). Purification and Improved Photoelectric Properties of Lead-Free Perovskite Cs3Bi2Br9 Crystals. Crystals, 13(6), 871. https://doi.org/10.3390/cryst13060871