Electrochemical Properties and Perspectives of Nickel(II) and Cobalt(II) Coordination Polymers-Aspects and an Application in Electrocatalytic Oxidation of Methanol
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Ni(II) and Co(II) Coordination Polymers
2.2. Preparation of Working Electrodes
2.3. Electrochemical Measurements
2.4. Morphological Study-Surface Examination
3. Results and Discussion
3.1. Electrochemical Impedance Spectroscopy
3.2. Electrochemical Behaviour of the GC Electrodes Modified with the Ni(II) and Co(II) Polymers
3.3. SEM/EDS Analysis
3.4. Electrochemical Behaviour of the GC Electrodes Modified with Ni(II) and Co(II) Polymers towards Methanol
3.5. Electroanalytical Determination of Methanol
4. Conclusions
- The isostructural Ni(II) and Co(II) coordination polymers exhibited different electrochemical behaviours, as evidenced by their different EIS spectra. The electrochemical stability during cyclization in a wide range of potentials did not show similarities between the studied coordination polymers, which could be interpreted using different electronic configurations of the metal(II) ions.
- In contrast to the Co(II) polymer, the Ni(II) polymer showed a large sensing potential for the electrocatalytic oxidation of methanol. This outstanding feature of {[Ni(4,4′-bpy)(H2O)4](6-Onic)2×2H2O}n is based on the enhancement of catalytic activity related to the redox couple Ni(II)/Ni(III), which leads to a significant enhancement of the analytical signal.
- The anodic current of methanol oxidation at the GC electrode modified with the Ni(II) polymer increased linearly with the concentration, representing a significant improvement in the catalytic application of coordination polymers for the catalytic oxidation and determination of methanol.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, X.; Pan, F.; Li, Y. Flower-like Bismuth Metal-Organic Frameworks Grown on Carbon Paper as a Free-Standing Electrode for Efficient Electrochemical Sensing of Cd2+ and Pb2+ in Water. Eng. Sci. 2018, 3, 77–83. [Google Scholar] [CrossRef][Green Version]
- Marandi, F.; Pantenburg, I.; Meyer, G. A New 3D Coordination Polymer of Bismuth with Nicotinic Acid N-Oxide. J. Chem. 2013, 2, 845810. [Google Scholar] [CrossRef][Green Version]
- Zhao, X.; Xiong, X.; Chen, X.; Li, J.H.J. Synthesis of halide anion-doped bismuth terephthalate hybrids for organic pollutant removal. Appl. Organometal. Chem. 2016, 30, 304–310. [Google Scholar] [CrossRef]
- Selvan, K.S.; Narayanan, S.S. Synthesis, structural characterization and electrochemical studies switching of MWCNT/novel tetradentate ligand forming metal complexes on PIGE modified electrode by using SWASV. Mat. Sci. Eng. C 2019, 98, 657–665. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, J.; Zhang, R.; Shi, H.; Wang, N.; Li, J.; Ma, F.; Zhang, D. Cu-based metal-organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sens. Actuators B 2016, 222, 632–637. [Google Scholar] [CrossRef]
- Okpara, E.C.; Ogunjinmi, O.E.; Oyewo, O.A.; Fayemi, O.E.; Onwudiwe, D.C. Green synthesis of copper oxide nanoparticles using extracts of Solanum macrocarpon fruit and their redox responses on SPAu electrode. Heliyon 2021, 7, e08571. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Hu, Z.; Wang, G.; Uvdal, K. Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 2015, 284, 206–235. [Google Scholar] [CrossRef]
- Zhou, S.F.; Hao, B.B.; Lin, T.; Zhang, C.X. A dual-functional MOF for high proton conduction and sensitive detection of ascorbic acid. Dalton Trans. 2020, 49, 14490–14496. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.-W.; Wang, X.-L.; Lin, H.-Y.; Xu, N.; Wang, X.; Liu, G.-C.; Chang, Z.-H. Two Anderson-type polyoxometalate-based metal-organic complexes with a flexible bis(pyrazine)-bis(amide) ligand for rapid adsorption and selective separation of cationic dyes. Inorg. Chim. Acta. 2020, 513, 119937. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Xu, N.; Chang, Z.; Liu, G.; Lin, H.; Wang, X. Four octamolybdate complexes constructed from a quino-line-imidazole-monoamide ligand: Structures and electrochemical, photocatalytic and magnetic properties. Cryst. Eng. Comm. 2020, 22, 8322–8329. [Google Scholar] [CrossRef]
- Škugor Rončević, I.; Vladislavić, N.; Buzuk, M. Copper(II) Coordination Compound with 2-Oxonicotinate: Synthesis, spectroscopic and electrochemical. Croat. Chem. Acta 2022, 95, 1–10. [Google Scholar] [CrossRef]
- Pang, L.Y.; Wang, P.; Gao, J.J.; Wen, Y.; Liu, H. An active metal-organic anion framework with highly exposed SO42- on {001} facets for the enhanced electrochemical detection of trace Fe3+. J. Electroanal. Chem. 2019, 836, 85–93. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, M.; Li, S.; Xia, D.; Tang, Z.; Hu, S.; Ye, S.; Sun, M.; He, C.; Shu, D. Efficient catalytic activity and bromate minimization over lattice oxygen-rich MnOOH nanorods in catalytic ozonation of bromide-containing organic pollutants: Lattice oxygen-directed redox cycle and bromate reduction. J. Hazard. Mater. 2021, 410, 124545. [Google Scholar] [CrossRef] [PubMed]
- Hok, L.; Lluch Sanchez, E.; Vianello, R.; Kukovec, B.-M.; Popović, Z. Self-assembly of cobalt(II) coordination polymers with differently halosubstituted nicotinate ligands and 4,4′-bipyridine-The effect of the halosubstituent positions on polymer types. Eur. J. Inorg. Chem. 2021, 2021, 1470–1480. [Google Scholar] [CrossRef]
- Fisher, B.J.; Eisenberg, R. Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. J. Am. Chem. Soc. 1980, 102, 7361–7363. [Google Scholar] [CrossRef]
- Haines, R.J.; Wittrig, R.E.; Kubiak, C.P. Molecular approaches to the electrochemical reduction of carbon dioxide. Inorg. Chem. 1994, 33, 4723–4728. [Google Scholar] [CrossRef]
- Losada, J.; Peso, I.d.; Beyer, L.; Hartung, J.; Fernandez, V.; Mobius, M. Electrocatalytic reduction of O2 and CO2 with electropolymerized films of polypyrrole cobalt(II) schiff-base complexes. J. Electroanal. Chem. 1995, 398, 89–93. [Google Scholar] [CrossRef]
- Deronzier, A.; Moutet, J.-C. Polypyrrole films containing metal complexes: Syntheses and applications. Coord. Chem. Rev. 1996, 147, 339–371. [Google Scholar] [CrossRef]
- Maxime, P.; Hervé, L.; Fethi, B. Improvement in the performance of a nickel complex-based electrochemical sensor for the detection of nitric oxide in solution. Sens. Actuators B Chem. 1999, 56, 1–5. [Google Scholar] [CrossRef]
- Giovanelli, D.; Lawrence, N.S.; Jiang, L.; Jones, T.G.J.; Compton, R.G. Electrochemical determination of sulphide at nickel electrodes in alkaline media: A new electrochemical sensor. Sens. Actuators B Chem. 2003, 88, 320–328. [Google Scholar] [CrossRef]
- Cheng, W.-L.; Sue, J.-W.; Chen, W.-C.; Chang, J.-L.; Zen, J.-M. Activated Nickel Platform for Electrochemical Sensing of Phosphate. Anal. Chem. 2010, 82, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Jia, D.; He, Y.; Miao, Y.; Wu, H.-L. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron. 2011, 26, 2948–2952. [Google Scholar] [CrossRef] [PubMed]
- Ourari, A.; Aggoun, D.; Ouahab, L. A Novel Copper(II)-Schiff base complex containing pyrrole ring: Synthesis, characterization and its modified electrodes applied in oxidation of aliphatic alcohols. Inorg. Chem. Commun. 2013, 33, 118–124. [Google Scholar] [CrossRef][Green Version]
- Sathiyavimal, S.; Vasantharaj, S.; Veeramani, V.; Saravanan, M.; Rajalakshmi, G.; Kaliannan, T.; Al-Misned, F.A.; Pugazhendh, A. Green chemistry route of biosynthesized copper oxide nanoparticles using Psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. J. Environ. Chem. Eng. 2021, 9, 105033. [Google Scholar] [CrossRef]
- Noor, T.; Ammad, M.; Zaman, N.; Iqbal, N.; Yaqoob, L.; Nasir, H. A highly efficient and stable copper BTC metal organic framework derived electrocatalyst for oxidation of methanol in DMFC application. Catal. Lett. 2019, 149, 3312–3327. [Google Scholar] [CrossRef]
- Asadi, F.; Azizi, S.N.; Ghasemi, S. A novel non-precious catalyst containing transition metal in nanoporous cobalt based metal-organic framework (ZIF-67) for electrooxidation of methanol. J. Electroanal. Chem. 2019, 847, 11318. [Google Scholar] [CrossRef]
- Mansor, M.; Timmiati, S.N.; Lim, K.L.; Wong, W.Y.; Kamarudin, S.K.; Nazirah Kamarudin, N.H. Recent progress of anode catalysts and their support materials for methanol electrooxidation reaction. Int. J. Hydrogen Energy 2019, 44, 14744–14769. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Elsaid, K.; Wilberforce, T.; Kamil, M.; Sayed, E.T.; Olabi, A. Environmental aspectsof fuel cells: A review. Sci. Total Environ. 2021, 752, 141803. [Google Scholar] [CrossRef]
- Jafarian, M.; Mahjani, M.G.; Heli, H.; Gobal, F.; Khajehsharifi, H.; Hamedi, M.H. A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode. Electrochim. Acta 2003, 48, 3423–3429. [Google Scholar] [CrossRef]
- Li, J. Nickel-organic frameworks as highly efficient catalyst for electrochemical conversion of CH3OH into formic acid. Electrochem. Comm. 2023, 146, 107416. [Google Scholar] [CrossRef]
- Asgari, M.; Ghannadi Maragheh, M.; Davarkhah, R.; Lohrasbi, E.; Nozad Golikand, A. Electrocatalytic oxidation of methanol on the nickel–cobalt modified glassy carbon electrode in alkaline medium. Electrochim. Acta 2012, 59, 284–289. [Google Scholar] [CrossRef]
- Cruz-Navarro, J.A.; Mendoza-Huizar, L.H.; Salazar-Pereda, V.; Cobos-Murcia, J.A.; Colorado-Peralta, R.; Alvarez-Romero, G.A. Progress in the use of electrodes modified with coordination compounds for methanol electro-oxidation. Inorg. Chim. Acta 2021, 520, 120293. [Google Scholar] [CrossRef]
- Vogel, F.; DiNaro Blanchard, J.L.; Marrone, P.A.; Rice, S.F.; Webley, P.A.; Peters, W.A.; Smith, K.A.; Tester, J.W. Critical review of kinetic data for the oxidation of methanol in supercritical water. J. Supercrit. Fluids 2005, 34, 249–286. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Faisal, M.; Ahmed, J.; Harraz, F.A.; Jalalah, M.; Alsareii, S.A. Sensitive Detection of Aqueous Methanol by Electrochemical Route Using Mesoporous α-Fe2O3 Doped CdSe Nanostructures Modified Glassy Carbon Electrode. J. Electrochem. Soc. 2021, 168, 057525. [Google Scholar] [CrossRef]
- Fornaciari, J.C.; Primc, D.; Kawashima, K.; Wygant, B.R.; Verma, S.; Spanu, L.; Mullins, C.B.; Bell, A.T.; Weber, A.Z. A Perspective on the Electrochemical Oxidation of Methane to Methanol in Membrane Electrode Assemblies. ACS Energy Lett. 2020, 5, 2954–2963. [Google Scholar] [CrossRef]
- Yuda, A.; Ashok, A.; Kumar, A. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. Catal. Rev. Sci. Eng. 2020, 64, 126–228. [Google Scholar] [CrossRef]
- Škugor Rončević, I.; Vladislavić, N.; Chatterjee, N.; Sokol, V.; Oliver, C.L.; Kukovec, B.-M. Structural and Electrochemical Studies of Cobalt(II) and Nickel(II) Coordination Polymers with 6-Oxonicotinate and 4,4′-Bipyridine. Chemosensors 2021, 9, 352. [Google Scholar] [CrossRef]
- Macdonald, J.R. Impedance Spectroscopy: Emphasizing, Solid Materials and Systems; John Wiley & Sons Inc.: New York, NY, USA, 1987; p. 301. ISBN 10:0471831220. [Google Scholar]
- Škugor Rončević, I.; Grubač, Z.; Metikoš-Huković, M. Electrodeposition of Hydroxyapatite Coating on AZ91D Alloy for Biodegradable Implant Application. Int. J. Electrochem. Sci. 2014, 9, 5907–5923. [Google Scholar]
- Cataldi Tommaso, R.I.; Centonze, D.; Ricciardi, G. Electrode Modification with a Poly(NiII-tetrame thyldibenzotetraaza[14]annulene) Film. Electrochemical Behavior and Redox Catalysis in Alkaline Solutions. Electroanalysis 1995, 7, 312–318. [Google Scholar] [CrossRef]
- Revenga-Parra, M.; García, T.; Lorenzo, E.; Pariente, F. Electrocatalytic oxidation of methanol and other short chain aliphatic alcohols on glassy carbon electrodes modified with conductive films derived from Ni(II)-(N, N′-Bis(2,5-Dihydroxybenzylidene)-1,2-diaminobenzene). Sens. Actuators B Chem. 2008, 130, 730–738. [Google Scholar] [CrossRef]
- Chung, D.Y.; Lee, K.J.; Sung, Y. Methanol Electro-oxidation on Pt Surface: Revisiting the Cyclic Voltammetry Interpretation. J. Phys. Chem. C. 2016, 120, 9028–9035. [Google Scholar] [CrossRef]
- Mahapatra, S.S.; Datta, J. Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium. Int. J. Electrochem. 2011, 2011, 563495. [Google Scholar] [CrossRef][Green Version]
- Choban, E.R.; Spendelow, J.S.; Gancs, L.; Wieckowski, A.; Kenis, P.J.A. Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/ alkaline media. Electrochim. Acta 2005, 50, 5390–5398. [Google Scholar] [CrossRef]
- Khouchaf, A.; Takky, D.; El Mahi Chbihi, M.; Benmokhtar, S. Electrocatalytic Oxidation of Methanol on Glassy Carbon Electrode Modified by Metal Ions (Copper and Nickel) Dispersed into Polyaniline Film. J. Mater. Sci. Chem. Eng. 2016, 4, 97–105. [Google Scholar] [CrossRef][Green Version]
- Garrido-Barros, P.; Grau, S.; Drouet, S.; Benet-Buchholz, J.; Gimbert-Suriñach, C.; Llobe, A. Can Ni Complexes Behave as Molecular Water Oxidation Catalysts? ACS Catal. 2019, 9, 3936–3945. [Google Scholar] [CrossRef][Green Version]
Abbreviation | Compounds and Terms |
---|---|
GC | Glassy Carbon |
Ni(II) polymer or Ni-BPY/6-Onic | GC electrode modified with {[Ni(4,4′-bpy)(H2O)4](6-Onic)2×2H2O}n |
Co(II) polymer or Co-BPY/6-Onic | GC electrode modified with {[Co4,4′-bpy)(H2O)4](6-Onic)2×2H2O}n |
105 × Qdl/ Ω−1 cm−2 sn | ndl | Rct/ Ω cm2 | 104 × Qdiff/ Ω−1 cm−2 sn | ndiff | Rdiff/ Ω cm2 | ||
---|---|---|---|---|---|---|---|
GC | 3.65 | 0.90 | 1118 | 5.08 | 0.53 | 310,240 | |
Ni-BPY/6-Onic | |||||||
1 layer | 5.75 | 0.90 | 1435 | 3.89 | 0.57 | 315,160 | |
2 layers | 6.38 | 0.91 | 2406 | 4.71 | 0.54 | 413,500 | |
5 layers | 6.63 | 0.91 | 10,931 | 1.70 | 0.53 | 778,220 | |
10 layers | 4.11 | 0.92 | 62,660 | 4.80 | 0.72 | 705,590 | |
Co-BPY/6-Onic | |||||||
1 layer | 3.11 | 0.89 | 16,922 | 1.24 | 0.54 | 307,050 | |
2 layers | 4.94 | 0.88 | 14,553 | 1.63 | 0.55 | 352,160 | |
5 layers | 5.91 | 0.89 | 9156 | 1.89 | 0.56 | 441,710 | |
10 layers | N/A | N/A | N/A | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škugor Rončević, I.; Buzuk, M.; Kukovec, B.-M.; Sokol, V.; Buljac, M.; Vladislavić, N. Electrochemical Properties and Perspectives of Nickel(II) and Cobalt(II) Coordination Polymers-Aspects and an Application in Electrocatalytic Oxidation of Methanol. Crystals 2023, 13, 718. https://doi.org/10.3390/cryst13050718
Škugor Rončević I, Buzuk M, Kukovec B-M, Sokol V, Buljac M, Vladislavić N. Electrochemical Properties and Perspectives of Nickel(II) and Cobalt(II) Coordination Polymers-Aspects and an Application in Electrocatalytic Oxidation of Methanol. Crystals. 2023; 13(5):718. https://doi.org/10.3390/cryst13050718
Chicago/Turabian StyleŠkugor Rončević, Ivana, Marijo Buzuk, Boris-Marko Kukovec, Vesna Sokol, Maša Buljac, and Nives Vladislavić. 2023. "Electrochemical Properties and Perspectives of Nickel(II) and Cobalt(II) Coordination Polymers-Aspects and an Application in Electrocatalytic Oxidation of Methanol" Crystals 13, no. 5: 718. https://doi.org/10.3390/cryst13050718
APA StyleŠkugor Rončević, I., Buzuk, M., Kukovec, B.-M., Sokol, V., Buljac, M., & Vladislavić, N. (2023). Electrochemical Properties and Perspectives of Nickel(II) and Cobalt(II) Coordination Polymers-Aspects and an Application in Electrocatalytic Oxidation of Methanol. Crystals, 13(5), 718. https://doi.org/10.3390/cryst13050718