Magnetism and Transport Properties of EuCdBi2 with Bi Square Net
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wadley, P.; Howells, B.; Zelezny, J.; Andrews, C.; Hills, V.; Campion, R.P.; Novak, V.; Olejnik, K.; Maccherozzi, F.; Dhesi, S.S.; et al. Electrical switching of an antiferromagnet. Science 2016, 351, 587. [Google Scholar] [CrossRef] [PubMed]
- Smejkal, L.; Zelezny, J.; Sinova, J.; Jungwirth, T. Electric control of dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 2017, 118, 106402. [Google Scholar] [CrossRef] [PubMed]
- Salemi, L.; Berritta, M.; Nandy, A.K.; Oppeneer, P.M. Orbitally dominated Rashba-Edelstein effect in noncentrosymmetric antiferromagnets. Nat. Commun. 2019, 10, 5381. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.F.; Zhang, S.H.; Gurung, G.; Yang, W.; Tsymbal, E.Y. Enonlinear anomalous hall effect for neel vector detection. Phys. Rev. Lett. 2020, 124, 067203. [Google Scholar] [CrossRef]
- Otrokov, M.M.; Menshchikova, T.V.; Rusinov, I.P.; Vergniory, M.G.; Kuznetsov, V.M.; Chulkov, E.V. Magnetic extension as an efficient method for realizing the quantum anomalous Hall state in topological insulators. JETP Lett. 2017, 105, 297–302. [Google Scholar] [CrossRef]
- Deng, J.; Shao, D.; Gao, J.; Yue, C.; Weng, H.; Fang, Z.; Wang, Z. Twisted nodal wires and three-dimensional quantum spin Hall effect in distorted square-net compounds. Phys. Rev. B 2022, 105, 224103. [Google Scholar] [CrossRef]
- Xu, Y.; Elcoro, L.; Song, Z.D.; Wieder, B.J.; Vergniory, M.G.; Regnault, N.; Chen, Y.; Felser, C.; Bernevig, B.A. High-throughput calculations of magnetic topological materials. Nature 2020, 586, 702. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Y.; Zhang, Y.; Shi, W.J.; Parkin, S.S.P.; Yan, B. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 2017, 19, 015008. [Google Scholar] [CrossRef]
- Otrokov, M.M.; Rusinov, I.P.; Blanco-Rey, M.; Hoffmann, M.; Vyazovskaya, A.Y.; Eremeev, V.S.; Ernst, A.; Echenique, P.M.; Arnau, A.; Chulkov, V.E. Unique thickness-dependent properties of the van der waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 2019, 122, 107202. [Google Scholar] [CrossRef]
- Masuda, H.; Sakai, H.; Tokunaga, M.; Yamasaki, Y.; Miyake, A.; Shiogai, J.; Nakamura, S.; Awaji, S.; Tsukazaki, A.; Nakao, H.; et al. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv. 2016, 2, e1501117. [Google Scholar] [CrossRef]
- Wang, J.K.; Zhao, L.L.; Yin, Q.; Kotliar, G.; Kim, M.S.; Aronson, M.C.; Morosan, E. Layered transition-metal pnictide SrMnBi2 with metallic blocking layer. Phys. Rev. B 2011, 84, 064428. [Google Scholar] [CrossRef]
- Wang, K.; Graf, D.; Wang, L.; Lei, H.; Tozer, S.W.; Petrovic, C. Two-dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2. Phys. Rev. B 2012, 85, 041101. [Google Scholar] [CrossRef]
- Park, J.; Lee, G.; Wolff-Fabris, F.; Koh, Y.Y.; Eom, M.J.; Kim, Y.K.; Farhan, M.A.; Jo, Y.J.; Kim, C.; Shim, J.H.; et al. Anisotropic Dirac fermions in a Bi square net of SrMnBi2. Phys. Rev. Lett. 2011, 107, 126402. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Graf, D.; Lei, H.; Tozer, S.W.; Petrovic, C. Quantum transport of two-dimensional Dirac fermions in SrMnBi2. Phys. Rev. B 2011, 84, 220401. [Google Scholar] [CrossRef]
- Lee, G.; Farhan, M.A.; Kim, J.S.; Shim, J.H. Anisotropic Dirac electronic structures of AMnBi2 (A = Sr, Ca). Phys. Rev. B 2013, 87, 245104. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Z.; Chen, C.; Shi, Y.; Xie, Z.; Yi, H.; Liang, A.; He, S.; He, J.; Peng, Y.; et al. Strong Anisotropy of Dirac Cones in SrMnBi2 and CaMnBi2 Revealed by Angle-Resolved Photoemission Spectroscopy. Sci. Rep. 2014, 4, 5385. [Google Scholar] [CrossRef]
- Guo, Y.F.; Princep, A.J.; Zhang, X.; Manuel, P.; Khalyavin, D.; Mazin, I.I.; Shi, Y.G.; Boothroyd, A.T. Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 2014, 90, 075120. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yu, Q.H.; Xia, T.L. Large linear magnetoresistance in a new Dirac material BaMnBi2. Chin. Phys. B 2016, 25, 107503. [Google Scholar] [CrossRef]
- Rahn, M.C.; Princep, A.J.; Piovano, A.; Kulda, J.; Guo, Y.F.; Shi, Y.G.; Boothroyd, A.T. Spin dynamics in the antiferromagnetic phases of the Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 2017, 95, 134405. [Google Scholar] [CrossRef]
- Ryu, H.; Park, S.Y.; Li, L.; Ren, W.; Neaton, J.B.; Petrovic, C.; Hwang, C.; Mo, S.K. Anisotropic Dirac fermions in BaMnBi2 and BaZnBi2. Sci. Rep. 2018, 8, 15322. [Google Scholar] [CrossRef]
- May, A.F.; McGuire, M.A.; Sales, B.C. Effect of Eu magnetism on the electronic properties of the candidate Dirac material EuMnBi2. Phys. Rev. B 2014, 90, 075109. [Google Scholar] [CrossRef]
- Wang, A.; Zaliznyak, I.; Ren, W.; Wu, L.; Graf, D.; Garlea, V.O.; Warren, J.B.; Bozin, E.; Zhu, Y.; Petrovic, C. Magnetotransport study of Dirac fermions in YbMnBi2 antiferromagnet. Phys. Rev. B 2016, 94, 165161. [Google Scholar] [CrossRef]
- Farhan, M.A.; Lee, G.; Shim, J.H. AEMnSb2 (AE = Sr, Ba): A new class of Dirac materials. J. Phys.-Condens. Matter 2014, 26, 042201. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Yang, S.; Yang, M.; Wang, L.; Matsushita, Y.; Miao, S.; Jiao, Y.; Cheng, J.; Li, Y.; Yamaura, K.; et al. Large negative magnetoresistance of a nearly Dirac material: Layered antimonide EuMnSb2. Phys. Rev. B 2017, 96, 205103. [Google Scholar] [CrossRef]
- Kondo, M.; Ochi, M.; Kojima, T.; Kurihara, R.; Sekine, D.; Matsubara, M.; Miyake, A.; Tokunaga, M.; Kuroki, K.; Murakawa, H.; et al. Tunable spin-valley coupling in layered polar Dirac metals. Commun. Mater. 2021, 2, 49. [Google Scholar] [CrossRef]
- Liu, J.; Liu, P.; Gordon, K.; Emmanouilidou, E.; Xing, J.; Graf, D.; Chakoumakos, B.C.; Wu, Y.; Cao, H.; Dessau, D.; et al. Nontrivial topology in the layered Dirac nodal-line semimetal candidate SrZnSb2 with distorted Sb square nets. Phys. Rev. B 2019, 100, 195123. [Google Scholar] [CrossRef]
- Wang, A.; Baranets, S.; Liu, Y.; Tong, X.; Stavitski, E.; Zhang, J.; Chai, Y.; Yin, W.G.; Bobev, S.; Petrovic, C. Magnetic mixed valent semimetal EuZnSb2 with Dirac states in the band structure. Phys. Rev. Res. 2020, 2, 033462. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, Y.; Zhu, W.; He, J.; Liu, B.; Liu, C.B.; Li, L.; Niu, C.; Luo, Y. Single crystal growth and physical properties of layered compound SrCdBi2. J. Phys.-Condens. Matter 2022, 34, 31. [Google Scholar] [CrossRef]
- Klemenz, S.; Lei, S.; Schoop, L.M. Topological semimetals in square-net materials. Annu. Rev. Mater. Res. 2019, 49, 185–206. [Google Scholar] [CrossRef]
- Shao, D.F.; Gurung, G.; Zhang, S.H.; Tsymbal, E.Y. Dirac nodal line metal for topological antiferromagnetic spintronics. Phys. Rev. Lett. 2019, 122, 077203. [Google Scholar] [CrossRef]
- Ren, W.; Wang, A.; Graf, D.; Liu, Y.; Zhang, Z.; Yin, W.G.; Petrovic, C. Absence of Dirac states in BaZnBi2 induced by spin-orbit coupling. Phys. Rev. B 2018, 97, 035147. [Google Scholar] [CrossRef]
- Sun, Z.L.; Wang, A.F.; Mu, H.M.; Wang, H.H.; Wang, Z.F.; Wu, T.; Wang, Z.Y.; Zhou, X.Y.; Chen, X.H. Field-induced metal-to-insulator transition and colossal anisotropic magnetoresistance in a nearly Dirac material EuMnSb2. NPJ Quantum Mater. 2021, 6, 94. [Google Scholar] [CrossRef]
- Wilde, J.M.; Riberolles, S.X.M.; Das, A.; Liu, Y.; Heitmann, T.W.; Wang, X.; Straszheim, W.E.; Bud’ko, S.L.; Canfield, P.C.; Kreyssig, A.; et al. Canted antiferromagnetic phases in the candidate layered Weyl material EuMnSb2. Phys. Rev. B 2022, 106, 024420. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, C.; Yi, C.; Zhao, G.; Xia, T.L.; Ji, J.; Shi, Y.; Yu, R.; Wang, X.; Chen, C.; et al. Interplay of Dirac electrons and magnetism in CaMnBi2 and SrMnBi2. Nat. Commun. 2016, 7, 13833. [Google Scholar] [CrossRef] [PubMed]
- Soh, J.R.; Manuel, P.; Schröter, N.M.B.; Yi, C.J.; Orlandi, F.; Shi, Y.G.; Prabhakaran, D.; Boothroyd, A.T. Magnetic and electronic structure of Dirac semimetal candidate EuMnSb2. Phys. Rev. B 2019, 100, 174406. [Google Scholar] [CrossRef]
- Aryal, N.; Li, Q.; Tsvelik, A.M.; Yin, W. Topological antiferromagnetic semimetal for spintronics: A case study of a layered square-net system EuZnSb2. Phys. Rev. B 2022, 106, 235116. [Google Scholar] [CrossRef]
- Nishiyama, H.; Sakai, H.; Nakagawa, K.; Hanasaki, N.; Ishiwata, S.; Masuda, H.; Ochi, M.; Kuroki, K.; Iguchi, S.; Sasaki, T.; et al. Variation of charge dynamics upon antiferromagnetic transitions in the Dirac semimetal EuMnBi2. Phys. Rev. B 2021, 104, 115111. [Google Scholar] [CrossRef]
- Johnston, D.C. Magnetic dipole interactions in crystals. Phys. Rev. B 2016, 93, 014421. [Google Scholar] [CrossRef]
- Masuda, H.; Sakai, H.; Takahashi, H.; Yamasaki, Y.; Nakao, A.; Moyoshi, T.; Nakao, H.; Murakami, Y.; Arima, T.; Ishiwata, S. Field-induced spin reorientation in the antiferromagnetic Dirac material EuMnBi2 revealed by neutron and resonant X-ray diffraction. Phys. Rev. B 2020, 101, 174411. [Google Scholar] [CrossRef]
- Xiao, Y.; Su, Y.; Meven, M.; Mittal, R.; Kumar, C.M.N.; Chatterji, T.; Price, S.; Persson, J.; Kumar, N.; Dhar, S.K.; et al. Magnetic structure of EuFe2As2 determined by single-crystal neutron diffraction. Phys. Rev. B 2009, 80, 174424. [Google Scholar] [CrossRef]
- Ryan, D.H.; Cadogan, J.M.; Xu, S.; Xu, Z.; Cao, G. Magnetic structure of EuFe2P2 studied by neutron powder diffraction. Phys. Rev. B 2011, 83, 132403. [Google Scholar] [CrossRef]
- Iida, K.; Nagai, Y.; Ishida, S.; Ishikado, M.; Murai, N.; Christianson, A.D.; Yoshida, H.; Inamura, Y.; Nakamura, H.; Nakao, A.; et al. Coexisting spin resonance and long-range magnetic order of Eu in EuRbFe4As4. Phys. Rev. B 2019, 100, 014506. [Google Scholar] [CrossRef]
- White, G.; Woods, S. Electrical and thermal resistivity of the transition elements at low temperatures. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Sci. 1959, 251, 273. [Google Scholar] [CrossRef]
- Mermin, N.D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 1966, 17, 1133. [Google Scholar] [CrossRef]
Atoms | Sites | x | y | z | B (Å) |
---|---|---|---|---|---|
Eu | 4e | 0 | 0 | 0.1162(1) | 0.0820(1) |
Cd | 4d | 0 | 0.5 | 0.25 | 0.1025(6) |
Bi(1) | 4c | 0 | 0 | 0.3423(5) | 0.0846(1) |
Bi(2) | 4e | 0 | 0.5 | 0 | 0.1004(3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, J.; Song, S.-J.; Yang, W.-Z.; Bao, J.-K.; Jiao, W.-H.; Xu, X.-F.; Ren, Z.; Cao, G.-H. Magnetism and Transport Properties of EuCdBi2 with Bi Square Net. Crystals 2023, 13, 654. https://doi.org/10.3390/cryst13040654
Liu Y, Li J, Song S-J, Yang W-Z, Bao J-K, Jiao W-H, Xu X-F, Ren Z, Cao G-H. Magnetism and Transport Properties of EuCdBi2 with Bi Square Net. Crystals. 2023; 13(4):654. https://doi.org/10.3390/cryst13040654
Chicago/Turabian StyleLiu, Yi, Jing Li, Shi-Jie Song, Wu-Zhang Yang, Jin-Ke Bao, Wen-He Jiao, Xiao-Feng Xu, Zhi Ren, and Guang-Han Cao. 2023. "Magnetism and Transport Properties of EuCdBi2 with Bi Square Net" Crystals 13, no. 4: 654. https://doi.org/10.3390/cryst13040654
APA StyleLiu, Y., Li, J., Song, S.-J., Yang, W.-Z., Bao, J.-K., Jiao, W.-H., Xu, X.-F., Ren, Z., & Cao, G.-H. (2023). Magnetism and Transport Properties of EuCdBi2 with Bi Square Net. Crystals, 13(4), 654. https://doi.org/10.3390/cryst13040654