Study of Nitridation Effect on Structural, Morphological, and Optical Properties of GaAs Film Growth on Silicon Substrates via Close Space Vapor Transport Technique
Abstract
1. Introduction
2. Experimental Details
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schlesinger, T. Gallium Arsenide. In Encyclopedia of Materials: Science and Technology; Buschow, K.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 3431–3435. [Google Scholar] [CrossRef]
- Rudolph, P.; Jurisch, M. Bulk growth of GaAs An overview. J. Cryst. Growth 1999, 198, 325–335. [Google Scholar] [CrossRef]
- Yugova, T.G.; Chuprakov, V.A.; Sanzharovsky, N.A.; Yugov, A.A.; Martynov, I.D.; Knyazev, S.N. Effect of a Travelling Magnetic Field on the Parameters of Tellurium-Doped Gallium Arsenide Single Crystals Grown by the Czochralski Method. Crystallogr. Rep. 2022, 67, 1099–1104. [Google Scholar] [CrossRef]
- Heckingbottom, R.; Davies, G.; Prior, K. Growth and doping of gallium arsenide using molecular beam epitaxy (MBE): Thermodynamic and kinetic aspects. Surf. Sci. 1983, 132, 375–389. [Google Scholar] [CrossRef]
- Nishizawa, J.; Kurabayashi, T. Mechanism of gallium arsenide MOCVD. Vacuum 1990, 41, 958–962. [Google Scholar] [CrossRef]
- Szymoński, M.; Bhattacharya, R.S. The sputtering of gallium arsenide at elevated temperatures. Appl. Phys. 1979, 20, 207–211. [Google Scholar] [CrossRef]
- Manasevit, H.M. Single-Crystal Gallium Arsenide on Insulating Substrates. Appl. Phys. Lett. 1968, 12, 156–159. [Google Scholar] [CrossRef]
- Cruz Bueno, J.J.; García Salgado, G.; Balderas Valadez, R.F.; Luna López, J.A.; Nieto Caballero, F.G.; Díaz Becerril, T.; Rosendo Andrés, E.; Coyopol Solís, A.; Romano Trujillo, R.; Morales Ruiz, C.; et al. Effect of the Gaseous Atmosphere in GaAs Films Grown by Close-Spaced Vapor Transport Technique. Crystals 2019, 9, 68. [Google Scholar] [CrossRef]
- Birkmann, B.; Rasp, M.; Stenzenberger, J.; Müller, G. Growth of 3” and 4” gallium arsenide crystals by the vertical gradient freeze (VGF) method. J. Cryst. Growth 2000, 211, 157–162. [Google Scholar] [CrossRef]
- Oshima, R.; Ogura, A.; Shoji, Y.; Makita, K.; Ubukata, A.; Koseki, S.; Imaizumi, M.; Sugaya, T. Ultra-High-Speed Growth of GaAs Solar Cells by Triple-Chamber Hydride Vapor Phase Epitaxy. Crystals 2023, 13, 370. [Google Scholar] [CrossRef]
- Ferhat, M.; Zaoui, A. Structural and electronic properties of III-V bismuth compounds. Phys. Rev. B 2006, 73, 115107. [Google Scholar] [CrossRef]
- Adachi, S. Physical Properties of III-V Semiconductor Compounds; Wiley-VCH: Hoboken, NJ, USA, 1992. [Google Scholar]
- Fujito, K.; Kubo, S.; Nagaoka, H.; Mochizuki, T.; Namita, H.; Nagao, S. Bulk GaN crystals grown by HVPE. J. Cryst. Growth 2009, 311, 3011–3014. [Google Scholar] [CrossRef]
- Humphreys, T.P.; Sukow, C.A.; Nemanich, R.J.; Posthill, J.B.; Rudder, R.A.; Hattangady, S.V.; Markunas, R.J. Microstructural and Optical Characterization of GaN Films Grown by PECVD on (0001) Sapphire Substrates. MRS Online Proc. Libr. (OPL) 1989, 162, 531. [Google Scholar] [CrossRef]
- Papamichail, A.; Kakanakova-Georgieva, A.; Sveinbjörnsson, E.Ö.; Persson, A.R.; Hult, B.; Rorsman, N.; Stanishev, V.; Le, S.P.; Persson, P.O.Å.; Nawaz, M.; et al. Mg-doping and free-hole properties of hot-wall MOCVD GaN. J. Appl. Phys. 2022, 131, 185704. [Google Scholar] [CrossRef]
- Moustakas, T.; Lei, T.; Molnar, R. Growth of GaN by ECR-assisted MBE. Phys. Condens. Matter 1993, 185, 36–49. [Google Scholar] [CrossRef]
- Kucharski, R.; Sochacki, T.; Lucznik, B.; Bockowski, M. Growth of bulk GaN crystals. J. Appl. Phys. 2020, 128, 050902. [Google Scholar] [CrossRef]
- García-Salgado, G.; Cruz-Bueno, J.; Ramírez-González, F.; Gastellou, E.; Nieto-Caballero, F.; Rosendo-Andrés, E.; Luna-López, J.; Coyopol-Solís, A.; Romano-Trujillo, R.; Morales-Ruiz, C.; et al. GaN obtained on quartz substrates through the nitridation of GaAs films deposited via CSVT. J. Alloys Compd. 2021, 887, 161469. [Google Scholar] [CrossRef]
- Richter, T.M.M.; Niewa, R. Chemistry of Ammonothermal Synthesis. Inorganics 2014, 2, 29–78. [Google Scholar] [CrossRef]
- Elke Meissner, R.N. (Ed.) Ammonothermal Synthesis and Crystal Growth of Nitrides; 0933-033X; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Kharisov, B.I.; Oxana, V. Less-Common Methods of the “Direct Synthesis” Area Direct Synthesis of Metal Complexes; Elsevier Science Publishing: Amsterdam, The Netherlands, 2018; pp. 415–433. [Google Scholar]
- Fathy, M.; Gad, S.; Anis, B.; Kashyout, A.E.H.B. Crystal Growth of Cubic and Hexagonal GaN Bulk Alloys and Their Thermal-Vacuum-Evaporated Nano-Thin Films. Micromachines 2021, 12, 1240. [Google Scholar] [CrossRef]
- Runton, D.; Trabert, B.; Shealy, J.; Vetury, R. History of GaN: High-Power RF Gallium Nitride (GaN) from Infancy to Manufacturable Process and Beyond. Microw. Mag. IEEE 2013, 14, 82–93. [Google Scholar] [CrossRef]
- Kobayashi, R.; Fujii, K.F.K.; Hasegawa, F.H.F. Etching of GaAs by Atomic Hydrogen Generated by a Tungsten Filament. Jpn. J. Appl. Phys. 1991, 30, L1447. [Google Scholar] [CrossRef]
- Beloruchev, L.V.; Dembovskii, V.V.; Morshtein, I.M. Method of determining the degree of dissociation of ammonia in different gaseous nitriding processes. Met. Sci. Heat Treat. 1968, 10, 227–228. [Google Scholar] [CrossRef]
- Sukach, G.A.; Kidalov, V.V.; Kotlyarevsky, M.B.; Potapenko, E.P. Structure and composition of gallium nitride films produced by processing gallium arsenide single crystals in atomic nitrogen. Tech. Phys. 2003, 48, 437–440. [Google Scholar] [CrossRef]
- JCPDS—ICDD. Powder Diffraction Files, Swarthmore, PA, Card No. 32-0389, PDF-2 Database (2000). Available online: https://scholar.google.com/scholar_lookup?hl=es-MX&publication_year=2000&pages=%00empty%00&author=JCPDSICDD&isbn=%00null%00&title=Powder+Diffraction+Files#d=gs_cit&t=1680218075343&u=%2Fscholar%3Fq%3Dinfo%3AKZri3gX175wJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Des (accessed on 27 February 2023).
- Bernal Correa, R.; Montes Monsalve, J.; Pulzara Mora, A.; López López, M.; Cruz Orea, A.; Cardona, J. Polycristalline growth of zinc blende gallium arsenide layers by R.F. magnetron sputtering. Superf. Vac. 2004, 27, 102–106. [Google Scholar]
- Blakemore, J.S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 1982, 53, R123–R181. [Google Scholar] [CrossRef]
- Coyopol, A.; García-Salgado, G.; Díaz-Becerril, T.; Juárez, H.; Rosendo, E.; López, R.; Pacio, M.; Luna-López, J.A.; Carrillo-López, J. Optical and Structural Properties of Silicon Nanocrystals Embedded in SiOx Matrix Obtained by HWCVD. J. Nanomater. 2012, 2012, 368268. [Google Scholar] [CrossRef]
- Coyopol, A.; Díaz-Becerril, T.; García-Salgado, G.; Juárez-Santisteban, H.; López, R.; Rosendo-Andrés, E. Evolution on the structural and optical properties of SiOx films annealed in nitrogen atmosphere. J. Lumin. 2014, 145, 88–93. [Google Scholar] [CrossRef]
- Saron, K.M.A.; Ibrahim, M.; Hashim, M.R.; Taha, T.A.; Elfadill, N.G.; Mkawi, E.M.; Allam, N.K. Leakage current reduction in n-GaN/p-Si (100) heterojunction solar cells. Appl. Phys. Lett. 2021, 118, 023902. [Google Scholar] [CrossRef]
- Sulikowski, B.; Olejniczak, Z.; Corberán, V.C. Faujasite Catalysts Promoted with Gallium Oxide: A Physicochemical Study. J. Phys. Chem. 1996, 100, 10323–10330. [Google Scholar] [CrossRef]
- Dadgar, A.; Alam, A.; Riemann, T.; Bläsing, J.; Diez, A.; Poschenrieder, M.; Strassburg, M.; Heuken, M.; Christen, J.; Krost, A. Crack-Free InGaN/GaN Light Emitters on Si(111). Phys. Status Solidi (A) 2001, 188, 155–158. [Google Scholar] [CrossRef]
- Chen, Z.; Jaramillo, T. The Use of UV-Visible Spectroscopy to Measure the Band Gap of a Semiconductor; Department of Chemical Engineering, Stanford University: Stanford, CA, USA, 2017. [Google Scholar]
Sample | Growth Temperature 1st Step | GaAs Deposit Time | Nitriding Temperature 2nd Step | Nitriding Time | Composition Weight % | Thickness | |||
---|---|---|---|---|---|---|---|---|---|
C | min | C | min | Ga | As | O | N | nm | |
M2 (GaAs) | 900 | 5 | - | - | 51.7 | 43.2 | 5.1 | - | 641 |
M4 (GaN) | 800 | 5 | 900 | 30 | 78.5 | 1.9 | 2.1 | 17.5 | 340 |
M5 (GaN) | 900 | 5 | 900 | 30 | 81.8 | 1.8 | 2.1 | 14.3 | 342 |
M6 (GaN) | 1000 | 5 | 900 | 30 | 76.8 | 1.7 | 1.9 | 19.6 | 323 |
SAMPLE | GaAs Results | ||||
---|---|---|---|---|---|
Deposit Temperature in Substrate | Position in (111) | FWHM (111) | Crystallite Size [nm] | Lattice Constant [Å] | |
M1 | 800 C | 27.39 | 0.687 | 12.3 | 5.633 |
M2 | 900 C | 27.40 | 0.588 | 14.8 | 5.631 |
M3 | 1000 C | 27.48 | 0.817 | 10.1 | 5.616 |
SAMPLE | GaAs Results | ||||
---|---|---|---|---|---|
Position in (002) | FWHM (002) | Crystallite Size [nm] | Lattice Constant a = b [Å] | Lattice Constant c [Å] | |
M4 | 34.52º | 0.802º | 9.21 | 3.157 | 5.192 |
M5 | 34.56º | 0.961º | 7.68 | 3.156 | 5.186 |
M6 | 34.88º | 0.614º | 12.03 | 3.142 | 5.170 |
SAMPLE | GaAs | GaN | ||||
---|---|---|---|---|---|---|
TO [cm] | LO [cm] | [cm] | [cm] | [cm] | [cm] | |
M4 | 256.18 | 283.86 | 397.45 | 423.42 | 562.14 | 720.77 |
M5 | 262.2 | 280.0 | 395.96 | 421.46 | 557.39 | 723.98 |
M6 | 264.9 | 284.8 | 397.45 | 423.11 | 561.98 | 720.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdez-Torija, E.A.; Coyopol, A.; García-Salgado, G.; Romano-Trujillo, R.; Morales-Ruiz, C.; Rosendo-Andrés, E.; Vásquez-Agustín, M.A.; Gracia-Jiménez, J.M.; Galeazzi-Isasmendi, R.; Morales-Morales, F. Study of Nitridation Effect on Structural, Morphological, and Optical Properties of GaAs Film Growth on Silicon Substrates via Close Space Vapor Transport Technique. Crystals 2023, 13, 613. https://doi.org/10.3390/cryst13040613
Valdez-Torija EA, Coyopol A, García-Salgado G, Romano-Trujillo R, Morales-Ruiz C, Rosendo-Andrés E, Vásquez-Agustín MA, Gracia-Jiménez JM, Galeazzi-Isasmendi R, Morales-Morales F. Study of Nitridation Effect on Structural, Morphological, and Optical Properties of GaAs Film Growth on Silicon Substrates via Close Space Vapor Transport Technique. Crystals. 2023; 13(4):613. https://doi.org/10.3390/cryst13040613
Chicago/Turabian StyleValdez-Torija, Eduardo Alejandro, Antonio Coyopol, Godofredo García-Salgado, Román Romano-Trujillo, Crisóforo Morales-Ruiz, Enrique Rosendo-Andrés, Marco Antonio Vásquez-Agustín, Justo Miguel Gracia-Jiménez, Reina Galeazzi-Isasmendi, and Francisco Morales-Morales. 2023. "Study of Nitridation Effect on Structural, Morphological, and Optical Properties of GaAs Film Growth on Silicon Substrates via Close Space Vapor Transport Technique" Crystals 13, no. 4: 613. https://doi.org/10.3390/cryst13040613
APA StyleValdez-Torija, E. A., Coyopol, A., García-Salgado, G., Romano-Trujillo, R., Morales-Ruiz, C., Rosendo-Andrés, E., Vásquez-Agustín, M. A., Gracia-Jiménez, J. M., Galeazzi-Isasmendi, R., & Morales-Morales, F. (2023). Study of Nitridation Effect on Structural, Morphological, and Optical Properties of GaAs Film Growth on Silicon Substrates via Close Space Vapor Transport Technique. Crystals, 13(4), 613. https://doi.org/10.3390/cryst13040613