Linear/Nonlinear Optical Characteristics of ZnO-Doped PVA/PVP Polymeric Films for Electronic and Optical Limiting Applications
Abstract
1. Introduction
2. Materials and Synthesizing Methods
2.1. Materials
2.2. Characterisation Techniques
2.3. Expremintal Procedure
3. Result and Discussion
3.1. XRD Measurements and Analysis of ZnO-Doped PVA/PVP Nanocomposite Films
3.2. FT-IR Analysis of ZnO-Doped PVA/PVP Nanocomposite Films
3.3. UV-Vis Spectroscopy of ZnO-Doped PVA/PVP Nanocomposite Films
3.3.1. Calculation of Refractive Index from the Energy Bandgap
3.3.2. Nonlinear Optical Parameters
3.4. Optical Limiting Effect of ZnO-Doped PVA/PVP Nanocomposite Films
3.5. Dielectric Behavior of ZnO-Doped PVA/PVP Nanocomposite Films
3.6. The Electric Modules of ZnO-Doped PVA/PVP Nanocomposite Films
3.7. AC Electrical Conductivity of ZnO-Doped PVA/PVP Nanocomposite Films
3.8. Nonlinear I–V Characteristics of ZnO-Doped PVA/PVP Nanocomposite Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burleigh, T.D.; Ruhe, C.; Forsyth, J. Photo-Corrosion of Different Metals during Long-Term Exposure to Ultraviolet Light. Corrosion 2003, 59, 774–779. [Google Scholar] [CrossRef]
- Ahn, J.H.; Bertoni, C.; Dunn, S.; Wang, C.; Talapin, D.V.; Gaponik, N.; Eychmüller, A.; Hua, Y.; Bryce, M.R.; Petty, M.C. White organic light-emitting devices incorporating nanoparticles of II–VI semiconductors. Nanotechnology 2007, 18, 33. [Google Scholar] [CrossRef]
- Kurchatov, I.S.; Bulychev, N.A.; Bundyuk, A.V.; Kazaryan, M.A.; Kustov, D.M. Study of spectral characteristics of materials for IR lasers based on II–VI semiconductors doped with iron-group ions. Bull. Lebedev Phys. Inst. 2015, 42, 107–109. [Google Scholar] [CrossRef]
- Trivedi, S.B.; Wang, C.-C.; Kutcher, S.; Hommerich, U.; Palosz, W. Crystal growth technology of binary and ternary II–VI semiconductors for photonic applications. J. Cryst. Growth 2007, 310, 1099–1106. [Google Scholar] [CrossRef]
- Weickmann, H.; Tiller, J.C.; Thomann, R.; Mülhaupt, R. Metallized Organoclays as New Intermediates for Aqueous Nanohybrid Dispersions, Nanohybrid Catalysts and Antimicrobial Polymer Hybrid Nanocomposites. Macromol. Mater. Eng. 2005, 290, 875–883. [Google Scholar] [CrossRef]
- Hassan, N.K.; Hashim, M.R.; Al-Douri, Y.; Al-Heuseen, K. Current Dependence Growth of ZnO Nanostructures by Electrochemical Deposition Technique. Int. J. Electrochem. Sci. 2012, 7, 4625–4635. [Google Scholar]
- Ali, A.M.; Harraz, F.A.; Ismail, A.A.; Al-Sayari, S.; Algarni, H.; Al-Sehemi, A.G. Synthesis of amorphous ZnO–SiO2 nanocomposite with enhanced chemical sensing properties. Thin Solid Films 2016, 605, 277–282. [Google Scholar] [CrossRef]
- Jeeju, P.; Jayalekshmi, S.; Chandrasekharan, K.; Sudheesh, P. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films. Thin Solid Films 2013, 531, 378–384. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnakumar, B.; Sobral, A.J.; Koh, J. Bio-based (chitosan/PVA/ZnO) nanocomposites film: Thermally stable and photoluminescence material for removal of organic dye. Carbohydr. Polym. 2018, 205, 559–564. [Google Scholar] [CrossRef]
- Dincă, V.; Mocanu, A.; Isopencu, G.; Busuioc, C.; Brajnicov, S.; Vlad, A.; Icriverzi, M.; Roseanu, A.; Dinescu, M.; Stroescu, M.; et al. Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties. Arab. J. Chem. 2018, 13, 3521–3533. [Google Scholar] [CrossRef]
- Zhang, D.; Chava, S.; Berven, C.; Lee, S.K.; Devitt, R.; Katkanant, V. Experimental study of electrical properties of ZnO nanowire random networks for gas sensing and electronic devices. Appl. Phys. A 2010, 100, 145–150. [Google Scholar] [CrossRef]
- Lee, C.-T. Fabrication Methods and Luminescent Properties of ZnO Materials for Light-Emitting Diodes. Materials 2010, 3, 2218–2259. [Google Scholar] [CrossRef]
- Ghorai, A.; Bayan, S.; Gogurla, N.; Midya, A.; Ray, S.K. Highly Luminescent WS2 Quantum Dots/ZnO Heterojunctions for Light Emitting Devices. ACS Appl. Mater. Interfaces 2016, 9, 558–565. [Google Scholar] [CrossRef]
- Wang, H.; Cao, S.; Yang, B.; Li, H.; Wang, M.; Hu, X.; Sun, K.; Zang, Z. NH4 Cl-Modified ZnO for High-Performance CsPbIBr2 Perovskite Solar Cells via Low-Temperature Process. Sol. RRL 2020, 4, 1900363. [Google Scholar] [CrossRef]
- Nanosized ZnO Prepared by Homogeneous Precipitation and Its Photocatalytic Property|Request PDF n.d. Available online: https://www.researchgate.net/publication/284381907_Nanosized_ZnO_prepared_by_homogeneous_precipitation_and_its_photocatalytic_property?msclkid=69250a7bcf4011ecb776c632f4231966 (accessed on 9 May 2022).
- Zhao, X.; Zheng, B.; Li, C.; Gu, H. Acetate-derived ZnO ultrafine particles synthesized by spray pyrolysis. Powder Technol. 1998, 100, 20–23. [Google Scholar] [CrossRef]
- Damonte, L.; Zélis, L.M.; Soucase, B.M.; Fenollosa, M.H. Nanoparticles of ZnO obtained by mechanical milling. Powder Technol. 2004, 148, 15–19. [Google Scholar] [CrossRef]
- Venkatachalam, S. Ultraviolet and visible spectroscopy studies of nanofillers and their polymer nanocomposites. In Spectroscopy of Polymer Nanocomposites; Thomas, S., Rouxel, D., Ponnamma, D., Eds.; William Andrew: New York, NY, USA, 2016; pp. 130–157. [Google Scholar] [CrossRef]
- Wen, F.; Zhu, C.; Li, L.; Zhou, B.; Zhang, L.; Han, C.; Li, W.; Yue, Z.; Wu, W.; Wang, G.; et al. Enhanced energy storage performance of polymer nanocomposites using hybrid 2D ZnO@MoS2 semiconductive nano-fillers. Chem. Eng. J. 2021, 430, 132676. [Google Scholar] [CrossRef]
- Wang, N.; Yu, J.; Ma, X. Preparation and characterization of compatible thermoplastic dry starch/poly(lactic acid). Polym. Compos. 2008, 29, 551–559. [Google Scholar] [CrossRef]
- Tucureanu, V.; Matei, A.; Mihalache, I.; Danila, M.; Popescu, M.; Bita, B. Synthesis and characterization of YAG:Ce,Gd and YAG:Ce,Gd/PMMA nanocomposites for optoelectronic applications. J. Mater. Sci. 2014, 50, 1883–1890. [Google Scholar] [CrossRef]
- Subbu, C.; Rajendran, S.; Kesavan, K.; Premila, R. The physical and electrochemical properties of poly(vinylidene chloride-co-acrylonitrile)-based polymer electrolytes prepared with different plasticizers. Ionics 2015, 22, 229–240. [Google Scholar] [CrossRef]
- Su, F.-H.; Zhang, Z.-Z. Friction and wear behavior of glass fabric/phenolic resin composites with surface-modified glass fabric. J. Appl. Polym. Sci. 2009, 112, 594–601. [Google Scholar] [CrossRef]
- Liao, C.Z.; Bao, S.P.; Tjong, S.C. Microstructure and fracture behavior of maleated high-density polyethylene/silicon carbide nanocomposites toughened with poly(styrene-ethylene-butylene-styrene) triblock copolymer. Adv. Polym. Technol. 2011, 30, 322–333. [Google Scholar] [CrossRef]
- Nicho, M.; García-Escobar, C.; Arenas, M.; Altuzar-Coello, P.; Cruz-Silva, R.; Güizado-Rodríguez, M. Influence of P3HT concentration on morphological, optical and electrical properties of P3HT/PS and P3HT/PMMA binary blends. Mater. Sci. Eng. B 2011, 176, 1393–1400. [Google Scholar] [CrossRef]
- Deghiedy, N.; El-Sayed, S. Evaluation of the structural and optical characters of PVA/PVP blended films. Opt. Mater. 2020, 100, 109667. [Google Scholar] [CrossRef]
- Saad, M.; Husain, B. Synthesis of PVA/PVP Based Hydrogel for Biomedical Applications: A Review. Energy Sources Part A 2018, 40, 2388–2393. [Google Scholar] [CrossRef]
- Zidan, H.M.; Abdelrazek, E.M.; Abdelghany, A.M.; Tarabiah, A.E. Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Mater. Res. Technol. 2018, 8, 904–913. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.H.; Mohamad, A.B.; Al-Amiery, A.A. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef]
- Hussein, S.I.; Abd-Elnaiem, A.M.; Ali, N.A.; Mebed, A.M. Enhanced Thermo-Mechanical Properties of Poly(vinyl alcohol)/Poly(vinyl pyrrolidone) Polymer Blended with Nanographene. Curr. Nanosci. 2020, 16, 994–1001. [Google Scholar] [CrossRef]
- Cassu, S.N.; Felisberti, M.I. Poly(vinyl alcohol) and poly(vinyl pyrrolidone) blends: Miscibility, microheterogeneity and free volume change. Polymer 1997, 38, 3907–3911. [Google Scholar] [CrossRef]
- El Salmawi, K.M. Gamma Radiation-Induced Crosslinked PVA/Chitosan Blends for Wound Dressing. J. Macromol. Sci. Part A 2007, 44, 541–545. [Google Scholar] [CrossRef]
- Ma, R.; Xiong, D.; Miao, F.; Zhang, J.; Peng, Y. Novel PVP/PVA hydrogels for articular cartilage replacement. Mater. Sci. Eng. C 2009, 29, 1979–1983. [Google Scholar] [CrossRef]
- Tang, S.; Murto, P.; Wang, J.; Larsen, C.; Andersson, M.R.; Wang, E.; Edman, L. On the Design of Host–Guest Light-Emitting Electrochemical Cells: Should the Guest be Physically Blended or Chemically Incorporated into the Host for Efficient Emission? Adv. Opt. Mater. 2019, 7, 1900451. [Google Scholar] [CrossRef]
- Baeg, K.-J.; Caironi, M.; Noh, Y.-Y. Toward Printed Integrated Circuits based on Unipolar or Ambipolar Polymer Semiconductors. Adv. Mater. 2013, 25, 4210–4244. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, B.; Sekhar, K.C.; Kumar, K.S.; Narsimlu, N. Influence of NaBr on Structural Studies of PVA/TiO2 Polymer Composites. Optik 2023, 272, 170244. [Google Scholar] [CrossRef]
- Pasha, S.K.K.; Deshmukh, K.; Ahamed, M.B.; Chidambaram, K.; Mohanapriya, M.K.; Raj, N.A.N. Investigation of Microstructure, Morphology, Mechanical, and Dielectric Properties of PVA/PbO Nanocomposites. Adv. Polym. Technol. 2015, 36, 352–361. [Google Scholar] [CrossRef]
- Ramesan, M.T. Synthesis and Characterization of Magnetoelectric Nanomaterial Composed of Fe3O4 and Polyindole. Adv. Polym. Technol. 2013, 32, 21362. [Google Scholar] [CrossRef]
- Choudhary, S.; Sengwa, R. ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr. Appl. Phys. 2018, 18, 1041–1058. [Google Scholar] [CrossRef]
- Ramesan, M.T.; Varghese, M.; Jayakrishnan, P.; Periyat, P. Silver-Doped Zinc Oxide as a Nanofiller for Development of Poly(vinyl alcohol)/Poly(vinyl pyrrolidone) Blend Nanocomposites. Adv. Polym. Technol. 2016, 37, 137–143. [Google Scholar] [CrossRef]
- Ahangar, E.G.; Abbaspour-Fard, M.H.; Shahtahmassebi, N.; Khojastehpour, M.; Maddahi, P. Preparation and Characterization of PVA/ZnO Nanocomposite. J. Food Process. Preserv. 2014, 39, 1442–1451. [Google Scholar] [CrossRef]
- Alghunaim, N.S.; Alhusaiki-Alghamdi, H. Role of ZnO nanoparticles on the structural, optical and dielectric properties of PVP/PC blend. Phys. B Condens. Matter 2019, 560, 185–190. [Google Scholar] [CrossRef]
- Ali, F.; Kershi, R.; Sayed, M.; AbouDeif, Y. Evaluation of structural and optical properties of Ce 3+ ions doped (PVA/PVP) composite films for new organic semiconductors. Phys. B Condens. Matter 2018, 538, 160–166. [Google Scholar] [CrossRef]
- Yedurkar, S.; Maurya, C.; Mahanwar, P. Biosynthesis of Zinc Oxide Nanoparticles Using Ixora Coccinea Leaf Extract—A Green Approach. Open J. Synth. Theory Appl. 2016, 05, 1–14. [Google Scholar] [CrossRef]
- Bigdeli, F.; Morsali, A.; Retailleau, P. Syntheses and characterization of different zinc(II) oxide nano-structures from direct thermal decomposition of 1D coordination polymers. Polyhedron 2010, 29, 801–806. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Springer: Berlin, Germany, 1974; p. 992. [Google Scholar]
- Lindon, J.C.; Tranter, G.E.; Koppenaal, D.W. Encyclopedia of Spectroscopy and Spectrometry, 2nd ed.; Elsevier: London, UK, 2010; Volume 3, p. 3246. [Google Scholar]
- Williamson, G.K.; Smallman, R.E., III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1956, 1, 34–46. [Google Scholar] [CrossRef]
- Sadhasivam, T.; Hudson, M.S.L.; Pandey, S.K.; Bhatnagar, A.; Singh, M.K.; Gurunathan, K.; Srivastava, O. Effects of nano size mischmetal and its oxide on improving the hydrogen sorption behaviour of MgH2. Int. J. Hydrogen Energy 2013, 38, 7353–7362. [Google Scholar] [CrossRef]
- Bhargava, R.N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 1994, 72, 416–419. [Google Scholar] [CrossRef]
- Factori, I.M.; Amaral, J.M.; Camani, P.H.; Rosa, D.S.; Lima, B.A.; Brocchi, M.; da Silva, E.R.; Souza, J.S. ZnO Nanoparticle/Poly(vinyl alcohol) Nanocomposites via Microwave-Assisted Sol–Gel Synthesis for Structural Materials, UV Shielding, and Antimicrobial Activity. ACS Appl. Nano Mater. 2021, 4, 7371–7383. [Google Scholar] [CrossRef]
- Dhahri, I.; Ellouze, M.; Labidi, S.; Al-Bataineh, Q.M.; Etzkorn, J.; Guermazi, H.; Telfah, A.; Tavares, C.J.; Hergenröder, R.; Appel, T. Optical and structural properties of ZnO NPs and ZnO–Bi2O3 nanocomposites. Ceram. Int. 2021, 48, 266–277. [Google Scholar] [CrossRef]
- Heiba, Z.K.; El-naggar, A.M.; Mohamed, M.B.; Altowairqi, Y.; Kamal, A.M. Noval Properties of PVA/PVP Polymer Blend Doped by Nano-ZnO/M (M = Co, Cu, Mn, V). Appl. Phys. A Mater. Sci. Process. 2021, 127, 1–12. [Google Scholar] [CrossRef]
- Bhajantri, R.; Ravindrachary, V.; Poojary, B.; Ismayil; Harisha, A.; Crasta, V. Studies on fluorescent PVA + PVP + MPDMAPP composite films. Polym. Eng. Sci. 2009, 49, 903–909. [Google Scholar] [CrossRef]
- Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Manikandan, A.; Nagarajan, E.R. Assimilation of NH4Br in Polyvinyl Alcohol/Poly(N-vinyl pyrrolidone) Polymer Blend-Based Electrolyte and Its Effect on Ionic Conductivity. J. Nanosci. Nanotechnol. 2018, 18, 3944–3953. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Sivakumar, M.; Subadevi, R. Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 2004, 58, 641–649. [Google Scholar] [CrossRef]
- Roy, A.S.; Gupta, S.; Sindhu, S.; Parveen, A.; Ramamurthy, P.C. Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos. Part B Eng. 2013, 47, 314–319. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Almoadi, A.; AlAbdulaal, T.H.; Alqahtani, M.S.; Harraz, F.A.; Al-Assiri, M.S.; Yahia, I.S.; Zahran, H.Y.; Mohammed, M.I.; Abdel-wahab, M.S. Structural, Optical, and Electrical Investigations of Nd2O3-Doped PVA/PVP Polymeric Composites for Electronic and Optoelectronic Applications. Polymers 2023, 15, 1351. [Google Scholar] [CrossRef]
- Alsaad, A.M.; Al Dairy, A.R.; Ahmad, A.A.; Al-Anbar, A.S.; Al-Bataineh, Q.M. Synthesis and characterization of as-grown doped polymerized (PMMA-PVA)/ZnO NPs hybrid thin films. Polym. Bull. 2021, 79, 2019–2040. [Google Scholar] [CrossRef]
- Elhosiny Ali, H.; Abdel-Aziz, M.; Mahmoud Ibrahiem, A.; Sayed, M.A.; Abd-Rabboh, H.S.; Awwad, N.S.; Algarni, H.; Shkir, M.; Yasmin Khairy, M. Microstructure Study and Linear/Nonlinear Optical Properties of Bi-Embedded PVP/PVA Films for Optoelectronic and Optical CUT-OFF Applications. Polymers 2022, 14, 1741. [Google Scholar] [CrossRef]
- Aga; Mu. Doping of Polymers with ZnO Nanostructures for Optoelectronic and Sensor Applications. Nanowires Sci. Technol. 2010, 2, 205–222. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Khafagy, R.M.; Hussien, M.S.A.; Sakr, G.B.; Ibrahim, M.A.; Yahia, I.S.; Zahran, H.Y. Enhancing the structural, optical, electrical, properties and photocatalytic applications of ZnO/PMMA nanocomposite membranes: Towards multifunctional membranes. J. Mater. Sci. Mater. Electron. 2021, 33, 1977–2002. [Google Scholar] [CrossRef]
- Im, Y.M.; Oh, T.H.; Nathanael, J.A.; Jang, S.S. Effect of ZnO nanoparticles morphology on UV blocking of poly(vinyl alcohol)/ZnO composite nanofibers. Mater. Lett. 2015, 147, 20–24. [Google Scholar] [CrossRef]
- Bajpai, S.; Jadaun, M.; Tiwari, S. Synthesis, characterization and antimicrobial applications of zinc oxide nanoparticles loaded gum acacia/poly(SA) hydrogels. Carbohydr. Polym. 2016, 153, 60–65. [Google Scholar] [CrossRef]
- Shanshool, H.M.; Yahaya, M.; Yunus, W.M.M.; Abdullah, I.Y. Third order nonlinearity of PMMA/ZnO nanocomposites as foils. Opt. Quantum Electron. 2015, 48, 7. [Google Scholar] [CrossRef]
- Yahia, I.S.; Jilani, A.; Abutalib, M.M.; Alfaify, S.; Shkir, M.; Abdel-Wahab, M.S.; Al-Ghamdi, A.A.; El-Naggar, A.M. A Study on Linear and Non-Linear Optical Constants of Rhodamine B Thin Film Deposited on FTO Glass. Phys. B Condens. Matter 2016, 490, 25–30. [Google Scholar] [CrossRef]
- Nwanya, A.; Chigbo, C.; Ezugwu, S.; Osuji, R.; Malik, M.; Ezema, F. Transformation of cadmium hydroxide to cadmium oxide thin films synthesized by SILAR deposition process: Role of varying deposition cycles. J. Assoc. Arab. Univ. Basic Appl. Sci. 2016, 20, 49–54. [Google Scholar] [CrossRef]
- Muhammad, F.F.; Aziz, S.; Hussein, S.A. Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte. J. Mater. Sci. Mater. Electron. 2014, 26, 521–529. [Google Scholar] [CrossRef]
- AlAbdulaal, T.H.; Ali, H.E.; Ganesh, V.; Aboraia, A.M.; Khairy, Y.; Hegazy, H.H.; Soldatov, A.V.; Zahran, H.Y.; Abdel-wahab, M.S.; Yahia, I.S. Investigating NaIO3 Doped PVA Polymeric Nanocomposites via the Structural Morphology and Linear and Nonlinear Optical Analysis: For Optoelectronic Systems. Optik 2021, 245, 167724. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hassan, A.Q.; Mohammed, S.J.; Karim, W.O.; Kadir, M.F.Z.; Tajuddin, H.A.; Chan, N.N.M.Y. Structural and Optical Characteristics of PVA:C-Dot Composites: Tuning the Absorption of Ultra Violet (UV) Region. Nanomaterials 2019, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.Y.; Mohamed, A.-R.; Abdelrazek, E.M.; Morsi, M.A.; Abdelghany, A. Structural investigation and enhancement of optical, electrical and thermal properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/graphene oxide nanocomposites. J. Mater. Res. Technol. 2018, 8, 1111–1120. [Google Scholar] [CrossRef]
- Khairy, Y.; Abdel-Aziz, M.M.; Algarni, H.; Alshehri, A.M.; Yahia, I.S.; Ali, H.E. The optical characteristic of PVA composite films doped by ZrO2 for optoelectronic and block UV-Visible applications. Mater. Res. Express 2019, 6, 115346. [Google Scholar] [CrossRef]
- Souri, D.; Shomalian, K. Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60−x) V2O5–40TeO2–xSb2O3 glasses. J. Non-Crystalline Solids 2009, 355, 1597–1601. [Google Scholar] [CrossRef]
- Moss, T.S. Relations between the Refractive Index and Energy Gap of Semiconductors. Phys. Status Solidi (b) 1985, 131, 415–427. [Google Scholar] [CrossRef]
- Ravindra, N.M.; Auluck, S.; Srivastava, V.K. On the Penn Gap in Semiconductors. Phys. Status Solidi (b) 1979, 93, K155–K160. [Google Scholar] [CrossRef]
- Hervé, P.; Vandamme, L. General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 1994, 35, 609–615. [Google Scholar] [CrossRef]
- Reddy, R.R.; Anjaneyulu, S. Analysis of the Moss and Ravindra relations. Phys. Status Solidi (b) 1992, 174, K91–K93. [Google Scholar] [CrossRef]
- Anani, M.; Mathieu, C.; Lebid, S.; Amar, Y.; Chama, Z.; Abid, H. Model for calculating the refractive index of a III–V semiconductor. Comput. Mater. Sci. 2007, 41, 570–575. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, J.K. Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phys. 2010, 48, 571–574. [Google Scholar]
- Gomaa, H.M.; Yahia, I.; Zahran, H. Correlation between the static refractive index and the optical bandgap: Review and new empirical approach. Phys. B Condens. Matter 2021, 620, 413246. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Bouzidi, A.; Zahran, H.Y.; Jalalah, M.; Harraz, F.A.; Yahia, I.S. Ammonium iodide salt-doped polyvinyl alcohol polymeric electrolyte for UV-shielding filters: Synthesis, optical and dielectric characteristics. J. Mater. Sci. Mater. Electron. 2021, 32, 4416–4436. [Google Scholar] [CrossRef]
- Frumar, M.; Jedelský, J.; Frumarová, B.; Wágner, T.; Hrdlička, M. Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Crystalline Solids 2003, 326–327, 399–404. [Google Scholar] [CrossRef]
- Xia, J.; Liu, Y.; Qiu, X.; Mao, Y.; He, J.; Chen, L. Solvothermal synthesis of nanostructured CuInS2 thin films on FTO substrates and their photoelectrochemical properties. Mater. Chem. Phys. 2012, 136, 823–830. [Google Scholar] [CrossRef]
- Ticha, H.; Mater, L. Semiempirical Relation between Non-Linear Susceptibility (Refractive Index), Linear Refractive Index and Optical Gap and Its Application to Amorphous Chalcogenides. J. Optoelectron. Adv. Mater. 2002, 4, 381–386. [Google Scholar]
- Mohammedi, A.; Ibrir, M.; Meglali, O.; Berri, S. Influence of Cu-Doping on Linear and Nonlinear Optical Properties of High-Quality ZnO Thin Films Obtained by Spin-Coating Technique. Phys. Status Solidi (b) 2021, 258, 2000472. [Google Scholar] [CrossRef]
- Abutalib, M.; Yahia, I. Analysis of the linear/nonlinear optical properties of basic fuchsin dye/FTO films: Controlling the laser power of red/green lasers. Optik 2018, 179, 145–153. [Google Scholar] [CrossRef]
- Jilani, W.; Bouzidi, A.; Almahri, A.; Guermazi, H.; Yahia, I.S. The effect of the thickness on structural, optical limiting, and dielectric properties of hybrid coatings rhodamine B dye films on an epoxy polymeric substrate for display applications. Phys. Scr. 2021, 96, 125862. [Google Scholar] [CrossRef]
- Choudhary, S. Structural, optical, dielectric and electrical properties of (PEO–PVP)–ZnO nanocomposites. J. Phys. Chem. Solids 2018, 121, 196–209. [Google Scholar] [CrossRef]
- Hemalatha, K.; Rukmani, K. Concentration dependent dielectric, AC conductivity and sensing study of ZnO-polyvinyl alcohol nanocomposite films. Int. J. Nanotechnol. 2017, 14, 961. [Google Scholar] [CrossRef]
- Aziz, S.B. Study of electrical percolation phenomenon from the dielectric and electric modulus analysis. Bull. Mater. Sci. 2015, 38, 1597–1602. [Google Scholar] [CrossRef]
- Mohammed, M.I. Dielectric dispersion and relaxations in (PMMA/PVDF)/ZnO nanocomposites. Polym. Bull. 2021, 79, 2443–2459. [Google Scholar] [CrossRef]
- Aziz, S.B. Role of Dielectric Constant on Ion Transport: Reformulated Arrhenius Equation. Adv. Mater. Sci. Eng. 2016, 2016, 2527013. [Google Scholar] [CrossRef]
- Aziz, S.B.; Abdullah, R.M.; Kadir, M.F.Z.; Ahmed, H.M. Non suitability of silver ion conducting polymer electrolytes based on chitosan mediated by barium titanate (BaTiO3) for electrochemical device applications. Electrochim. Acta 2019, 296, 494–507. [Google Scholar] [CrossRef]
- Kobayashi, M.; Mizuno, M.; Aizawa, T.; Hayashi, M.; Mitani, K. Development of Zinc-Oxide Non-Linear Resistors and Their Applications to Gapless Surge Arresters. IEEE Trans. Power Appar. Syst. 1978, PAS-97, 1149–1158. [Google Scholar] [CrossRef]
- Hemalatha, K.S.; Sriprakash, G.; Prasad, M.V.N.A.; Damle, R.; Rukmani, K. Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy. J. Appl. Phys. 2015, 118, 154103. [Google Scholar] [CrossRef]
- Bin Ahmad, M.; Fatehi, A.; Zakaria, A.; Mahmud, S.; Mohammadi, S.A. Fabrication of an Electrically-Resistive, Varistor-Polymer Composite. Int. J. Mol. Sci. 2012, 13, 15640–15652. [Google Scholar] [CrossRef] [PubMed]
- Abkowitz, M.; Facci, J.S.; Rehm, J. Direct evaluation of contact injection efficiency into small molecule based transport layers: Influence of extrinsic factors. J. Appl. Phys. 1998, 83, 2670–2676. [Google Scholar] [CrossRef]
- Janardhanam, V.; Jyothi, I.; Lee, J.-H.; Kim, J.-Y.; Reddy, V.R.; Choi, C.-J. Electrical Properties and Carrier Transport Mechanism of Au/n-GaN Schottky Contact Modified Using a Copper Pthalocyanine (CuPc) Interlayer. Mater. Trans. 2014, 55, 758–762. [Google Scholar] [CrossRef]
- Bunakov, A.; Lachinov, A.; Salikhov, R. Current-voltage characteristics of thin poly(biphenyl-4-ylphthalide) films. Macromol. Symp. 2004, 212, 387–392. [Google Scholar] [CrossRef]
Samples | Peaks Position, (2 Theta) | FWHM, | Crystalline Size, (D = nm) | d-spacing, (Angstrom) | ||
---|---|---|---|---|---|---|
Pure PB ZnO0 | 19.6° | 0.037854 | 3.7 | 4.527 | 9.32 | 72.38 |
PB ZnO1 | 19.79° | 0.040994 | 3.43 | 4.484 | 10.10 | 84.84 |
PB ZnO2 | 19.36° | 0.0341911 | 4.11 | 4.583 | 8.426 | 59.09 |
PB ZnO3 | 19.77° | 0.0542522 | 2.59 | 4.489 | 13.3 | 148.6 |
PB ZnO4 | 19.76° | 0.06123 | 2.29 | 4.491 | 15.080 | 189.3 |
PB ZnO5 | 19.89° | 0.0525077 | 3.23 | 4.462 | 11.258 | 110.8 |
Samples | Eg (ind), (eV) | Eg (d), (eV) | , (eV) | Absorption Edge, (eV) |
---|---|---|---|---|
Pure PB ZnO0 | 5.69 | 6.06 | 5.09 | 5.95 |
PB ZnO1 | 5.45 | 6.002 | 5.04 | 5.87 |
PB ZnO2 | 5.16 | 5.92 | 4.7 | 5.7 |
PB ZnO3 | 2.56 | 2.96 | 2.53 | 2.6 |
PB ZnO4 | 2.11 | 2.76 | 2.31 | 2.39 |
PB ZnO5 | 1.82 | 2.37 | 1.89 | 2.01 |
(a) Indirect Band Transition. | ||||||||
---|---|---|---|---|---|---|---|---|
Samples | Refractive Index Values (n): from the Indirect Bandgaps | |||||||
Moss | Ravindra | Hervé and Vandamme | Reddy | Anani | Kumar and Singh | Hossam, Ibrahim, and Heba | Average | |
Pure PB ZnO0 | 2.021 | 2.087 | 1.799 | 1.853 | 2.262 | 1.922 | 1.762 | 1.958 |
PBZnO1 | 2.043 | 2.109 | 1.833 | 1.896 | 2.31 | 1.949 | 1.792 | 1.990 |
PBZnO2 | 2.071 | 2.138 | 1.877 | 1.950 | 2.368 | 1.983 | 1.831 | 2.031 |
PBZnO3 | 2.468 | 2.548 | 2.491 | 2.651 | 2.888 | 2.486 | 2.353 | 2.555 |
PBZnO4 | 2.590 | 2.674 | 2.663 | 2.845 | 2.978 | 2.646 | 2.508 | 2.700 |
PBZnO5 | 2.687 | 2.775 | 2.790 | 2.992 | 3.036 | 2.775 | 2.630 | 2.812 |
(b) Direct band transition. | ||||||||
Pure PB ZnO0 | 1.989 | 2.054 | 1.751 | 1.790 | 2.188 | 1.883 | 1.718 | 1.910 |
PBZnO1 | 1.994 | 2.059 | 1.758 | 1.799 | 2.199 | 1.889 | 1.724 | 1.918 |
PBZnO2 | 2.001 | 2.066 | 1.768 | 1.813 | 2.216 | 1.897 | 1.734 | 1.928 |
PBZnO3 | 2.380 | 2.457 | 2.360 | 2.506 | 2.808 | 2.373 | 2.241 | 2.446 |
PBZnO4 | 2.422 | 2.501 | 2.423 | 2.5762 | 2.848 | 2.427 | 2.295 | 2.499 |
PBZnO5 | 2.516 | 2.598 | 2.560 | 2.728 | 2.926 | 2.549 | 2.414 | 2.613 |
(a) Indirect Bandgap of the Multiple Systems. | |||||
---|---|---|---|---|---|
Samples | High-Frequency Dielectric Constants, (ε∞) | Static Dielectric Constant, (ε0) | (esu) | (esu) | (esu) |
Pure PB ZnO0 | 3.83 | 467.74 | 0.225 | 4.41 | 0.848 |
PB ZnO1 | 3.96 | 385.101 | 0.235 | 5.26 | 0.996 |
PB ZnO2 | 4.12 | 299.072 | 0.2490 | 6.538 | 1.212 |
PB ZnO3 | 6.53 | 8.102 | 0.4403 | 63.914 | 9.42 |
PB ZnO4 | 7.29 | 7.317 | 0.5011 | 107.26 | 14.96 |
PB ZnO5 | 7.91 | 8.597 | 0.5502 | 155.85 | 20.87 |
(b) Direct bandgaps of the different approaches. | |||||
Pure PB ZnO0 | 3.65 | 617.14 | 0.211 | 3.37 | 0.665 |
PB ZnO1 | 3.67 | 591.88 | 0.213 | 3.518 | 0.691 |
PB ZnO2 | 3.71 | 557.35 | 0.216 | 3.733 | 0.729 |
PB ZnO3 | 5.98 | 14.85 | 0.397 | 42.243 | 6.50 |
PB ZnO4 | 6.24 | 10.54 | 0.417 | 51.724 | 7.79 |
PB ZnO5 | 6.82 | 7.133 | 0.464 | 78.913 | 11.37 |
Samples | σdc (S/m) | s |
---|---|---|
Pure PB ZnO0 | 1.53 × 10−8 | 1.00618 |
PB ZnO1 | 2.68 × 10−8 | 1.00576 |
PB ZnO2 | 3.01 × 10−8 | 1.00529 |
PB ZnO3 | 3.49 × 10−8 | 0.99833 |
PB ZnO4 | 7.51 × 10−8 | 0.99786 |
PB ZnO5 | 1.76 × 10−7 | 0.9977 |
Sample | ρ1 | ρ2 | ρ3 |
---|---|---|---|
Pure PB ZnO0 | 0.57 | 0.97 | 1.60 |
PB ZnO1 | 0.54 | 0.94 | |
PB ZnO2 | 0.60 | 1.01 | |
PB ZnO3 | 0.97 | 1.61 | 1.44 |
PB ZnO4 | 0.86 | 1.87 | 1.41 |
PB ZnO5 | 0.87 | 2.04 | 1.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zyoud, S.H.; AlAbdulaal, T.H.; Almoadi, A.; Alqahtani, M.S.; Harraz, F.A.; Al-Assiri, M.S.; Yahia, I.S.; Zahran, H.Y.; Mohammed, M.I.; Abdel-wahab, M.S. Linear/Nonlinear Optical Characteristics of ZnO-Doped PVA/PVP Polymeric Films for Electronic and Optical Limiting Applications. Crystals 2023, 13, 608. https://doi.org/10.3390/cryst13040608
Zyoud SH, AlAbdulaal TH, Almoadi A, Alqahtani MS, Harraz FA, Al-Assiri MS, Yahia IS, Zahran HY, Mohammed MI, Abdel-wahab MS. Linear/Nonlinear Optical Characteristics of ZnO-Doped PVA/PVP Polymeric Films for Electronic and Optical Limiting Applications. Crystals. 2023; 13(4):608. https://doi.org/10.3390/cryst13040608
Chicago/Turabian StyleZyoud, Samer H., Thekrayat H. AlAbdulaal, Ali Almoadi, Mohammed S. Alqahtani, Farid A. Harraz, Mohammad S. Al-Assiri, Ibrahim S. Yahia, Heba Y. Zahran, Mervat I. Mohammed, and Mohamed Sh. Abdel-wahab. 2023. "Linear/Nonlinear Optical Characteristics of ZnO-Doped PVA/PVP Polymeric Films for Electronic and Optical Limiting Applications" Crystals 13, no. 4: 608. https://doi.org/10.3390/cryst13040608
APA StyleZyoud, S. H., AlAbdulaal, T. H., Almoadi, A., Alqahtani, M. S., Harraz, F. A., Al-Assiri, M. S., Yahia, I. S., Zahran, H. Y., Mohammed, M. I., & Abdel-wahab, M. S. (2023). Linear/Nonlinear Optical Characteristics of ZnO-Doped PVA/PVP Polymeric Films for Electronic and Optical Limiting Applications. Crystals, 13(4), 608. https://doi.org/10.3390/cryst13040608