# The Effect of Interatomic Potentials on the Nature of Nanohole Propagation in Single-Crystal Nickel: A Molecular Dynamics Simulation Study

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Simulation Conditions

#### 2.1. Initial Conditions

^{−1}was applied to the Y direction of single-crystal Ni. In the simulation, the simulation timestep was 0.001 ps. To analyze the nanohole propagation behaviors of single-crystal Ni, we visualized the atomic configurations and stress distributions of Ni atoms using the Open Visualization Tool (OVITO) [39].

#### 2.2. Potential between Atoms

## 3. Simulation Results and Discussion

#### 3.1. Stress–Strain Behavior

#### 3.2. Nanohole Propagation Behavior

_{yy}= 32.2 GPa). As the $\mathsf{\epsilon}$ value increased, the no. 1 nanohole gradually grew and coalesced with the main nanohole. At the same time, the no. 2 nanopore formed at the right-bottom corner of the main nanohole due to the stress concentration (ε = 10.2%, σ

_{yy}= 31 GPa; see Figure 4(c1)). Then, the no. 2 nanopore gradually grew and coalesced with the main nanohole, and the left region of the main nanohole also produced two nanopores (no. 3 and no. 4 nanopores). As shown in Figure 4d, the plastic deformation occurred in the upper local area of the right nanopore. When ε = 10.7%, the new no. 3 and no. 4nanopores continued to grow, and the misorientation between the tensile direction and the nanohole growth direction was 45°, indicating that the crack mainly propagated along the (110) plane of single-crystal Ni (see Figure 4g). Meanwhile, the stress concentration was present in the region of the front of the right-bottom corner of the propagated nanohole (Figure 4g; σ

_{yy}= 34 GPa), which gave rise to the new no. 5 nanopore initiation (Figure 4h). As ε = 15.9%, the nanohole propagated across the whole single-crystal Ni (Figure 4i). When the $\mathsf{\epsilon}$ value was below 10.4%, the nanohole was propagated using a fast brittle propagation model that included the process of formation and the coalescence of nanopores at the front of the nanohole with almost no emission of dislocations from the nanohole. With the strain increasing from 10.4% to 10.9%,however, the process of nanohole propagation was accompanied by the emission and slip of dislocations.

_{yy}= 26 GPa at the right-side local region of the nanohole (Figure 7(d1,d2)). Further increased strain led to the formation of a new nanopore to release the stress concentration level (Figure 7(e1,e2)). Finally, through the process of dislocation slip and the formation and coalescence of the nanopore, the tensile model was completely fractured.

#### 3.3. Relationship between Crack Length and Tensile Strain

#### 3.4. Discussion

## 4. Conclusions

- (1)
- The MEAM potential is best suited to describe the brittle propagation behavior of nanoholes in single-crystal Ni.
- (2)
- The EAM/FS potential is effective in characterizing the plastic growth behavior of nanoholes in single-crystal Ni.

^{−1}). The microstructure evolution and nanohole propagation process in the single-crystal Ni can be different as the simulation conditions change. In the future, we will systematically consider the effects of temperature, strain rate, crack shape, and potential function on crack propagation in single-crystal Ni.

## Supplementary Materials

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Proudhon, H.; Li, J.; Wang, F.; Roos, A.; Chiaruttini, V.; Forest, S. 3D simulation of short fatigue crack propagation by finite element crystal plasticity and remeshing. Int. J. Fatigue
**2016**, 82, 238–246. [Google Scholar] [CrossRef] - Lin, B.; Zhao, L.G.; Tong, J. A crystal plasticity study of cyclic constitutive behavior, crack-tip deformation and crack-growth path for a polycrystalline nickel-based superalloy. Eng. Fract. Mech.
**2011**, 78, 2174–2192. [Google Scholar] [CrossRef] [Green Version] - Li, L.; Shen, L.; Proust, G. Fatigue crack initiation life prediction for aluminum alloy7075 using crystal plasticity finite element simulations. Mech. Mater.
**2015**, 81, 84–93. [Google Scholar] [CrossRef] - Yang, S.; Ma, G.; Ren, X.; Ren, F. Cover refinement of numerical manifold method for crack propagation simulation. Eng. Anal. Bound. Elem.
**2014**, 43, 37–49. [Google Scholar] [CrossRef] - Özden, U.A.; Mingard, K.P.; Zivcec, M.; Bezold, A.; Broeckmann, C. Mesoscopical finite element simulation of fatigue crack propagation in WC/Co-hard metal. Int. J. Refract. Met. Hard Mater.
**2015**, 49, 261–267. [Google Scholar] [CrossRef] - Dewang, Y.; Hora, M.S.; Panthi, S.K. Prediction of crack location and propagation in stretch flanging process of aluminum alloy AA-5052 sheet using FEM simulation. Trans. Nonferrous Met. Soc. China
**2015**, 25, 2308–2320. [Google Scholar] [CrossRef] - Özden, U.A.; Bezold, A.; Broeckmann, C. Numerical simulation of fatigue crack propagation in WC/Co based on a continuum damage mechanics approach. Prog. Mater. Sci.
**2014**, 3, 1518–1523. [Google Scholar] [CrossRef] [Green Version] - Keyhani, A.; Goudarzi, M.; Mohammadi, S.; Roumina, R. XFEM–dislocation dynamics multi-scale modeling of plasticity and fracture. Comput. Mater. Sci.
**2015**, 104, 98–107. [Google Scholar] [CrossRef] - Calvo, F.; Yurtsever, E. The quantum structure of anionic hydrogen clusters. J. Chem. Phys.
**2018**, 148, 102305. [Google Scholar] [CrossRef] [Green Version] - Hou, Y.; Wang, L.; Wang, D.; Qu, X.; Wu, J. Using a molecular dynamics simulation to investigate asphalt nano-cracking under external loading conditions. Appl. Sci.
**2017**, 7, 770. [Google Scholar] [CrossRef] [Green Version] - Ramezani, M.G.; Golchinfar, B. Mechanical properties of cellulose nanocrystal (CNC) bundles: Coarse-grained molecular dynamic simulation. J. Compos. Sci.
**2019**, 3, 57. [Google Scholar] [CrossRef] [Green Version] - Liu, C.; Yao, Y. Study of crack-propagation mechanism of Al
_{0.1}CoCrFeNi high-entropy alloy by molecular dynamics method. Crystals**2023**, 13, 11. [Google Scholar] [CrossRef] - Lee, S.; Kang, H.; Bae, D. Molecular dynamics study on crack propagation in Al containing Mg–Si clusters formed during natural aging. Materials
**2023**, 16, 883. [Google Scholar] [CrossRef] [PubMed] - Komanduri, R.; Chandrasekaran, N.; Raff, L.M. Molecular dynamics (MD) simulation of uniaxial tensile of some single-crystal cubic metals at nanolevel. Int. J. Mech. Sci.
**2001**, 43, 2237–2260. [Google Scholar] [CrossRef] - Xu, S.; Deng, X. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal. Nanotechnology
**2008**, 19, 115705. [Google Scholar] [CrossRef] - Cui, C.B.; Beom, H.G. Molecular dynamics simulations of edge cracks in copper and aluminum single crystals. Mater. Sci. Eng. A
**2014**, 15, 102–109. [Google Scholar] [CrossRef] - Zhuo, X.R.; Kim, J.H.; Gyu Beom, H. Atomistic investigation of crack growth resistance in a single-crystal Al-nanoplate. J. Mater. Res.
**2016**, 9, 1185–1192. [Google Scholar] [CrossRef] - Ding, J.; Wang, L.-S.; Song, K.; Liu, B.; Huang, X. Molecular dynamics simulation of crack propagation in single-crystal Aluminum plate with central cracks. J. Nanomater.
**2017**, 2017, 5181206. [Google Scholar] [CrossRef] [Green Version] - Mikelani, M.; Panjepour, M.; Taherizadeh, A. Investigation on mechanical properties of nanofoam aluminum single crystal: Using the method of molecular dynamics simulation. Appl. Phys. A Mater. Sci. Process.
**2020**, 126, 921. [Google Scholar] [CrossRef] - Ji, H.; Ren, K.; Ding, L.; Wang, T.; Li, J.-M.; Yang, J. Molecular dynamics simulation of the interaction between cracks in single crystal Aluminum. Mater. Today Commun.
**2022**, 30, 103020. [Google Scholar] [CrossRef] - Yu, J.; Zhang, Q.; Liu, R.; Yue, Z.; Tang, M.; Li, X. Molecular dynamics simulation of crack propagation behaviors at the Ni/Ni
_{3}Al grain boundary. RSC Adv.**2014**, 4, 32749. [Google Scholar] [CrossRef] - Hou, N.X.; Wen, Z.X.; Yue, Z.F. Creep behavior of single crystal superalloy specimen under temperature gradient condition. Mater. Sci. Eng. A
**2009**, 510–511, 42–45. [Google Scholar] [CrossRef] - Mao, H.; Wen, Z.; Yue, Z.; Wang, B. The evolution of plasticity for nickel-base single crystal cooled blade with film cooling holes. Mater. Sci. Eng. A
**2013**, 587, 79–84. [Google Scholar] [CrossRef] - Kim, J.; Suh, C.; Amanov, A.; Kim, H.; Pyun, Y. Rotary bending fatigue properties of Inconel 718 alloys by ultrasonic nanocrystal surface modification technique. J. Eng.
**2015**, 13, 133–137. [Google Scholar] [CrossRef] - Yang, X.F.; He, C.Y.; Yuan, G.J.; Chen, H.; Wang, R.Z.; Jia, Y.F.; Tu, S.T. The effects of grain boundary structures on crack nucleation in nickel nanolaminsted structure: A molecular dynamics study. Comput. Mater. Sci.
**2021**, 186, 110019. [Google Scholar] [CrossRef] - Mishin, Y.; Farkas, D.; Mehl, M.J.; Papaconstantopoulos, D.A. Interatomic potentials for monatomic metals from experimental data and ab initio calculations. Phys. Rev. B
**1999**, 59, 3393–3407. [Google Scholar] [CrossRef] [Green Version] - Wu, W.-P.; Yao, Z.-Z. Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel. Theor. Appl. Fract. Mech.
**2012**, 62, 67–75. [Google Scholar] [CrossRef] - Sung, P.-H.; Chen, T.-C. Studies of crack growth and propagation of single-crystal nickel by molecular dynamics. Comput. Mater. Sci.
**2015**, 102, 151–158. [Google Scholar] [CrossRef] - Ma, L.; Xiao, S.; Deng, H.; Hu, W. Atomistic simulation of mechanical properties and crack propagation on irradiated nickel. Comput. Mater. Sci.
**2016**, 120, 21–28. [Google Scholar] [CrossRef] - Zhang, Y.; Jiang, S. Molecular dynamics simulation of crack propagation in nanoscale polycrystal nickel based on different strain rate. Metal
**2017**, 7, 432. [Google Scholar] [CrossRef] [Green Version] - Zhang, Y.; Jiang, S.; Zhu, X.; Zhao, Y. Mechanisms of crack propagation in nanoscale single crystal, bicrystal and tricrystal nickels based on the molecular dynamics simulation. Results Phys.
**2017**, 7, 1722–1733. [Google Scholar] [CrossRef] - Zhang, Y.; Jiang, S. Investigation on dislocation-based mechanisms of void growth and coalescence on single and nanotwinned nickels by molecular dynamics simulation. Philos. Mag.
**2017**, 97, 2772–2794. [Google Scholar] [CrossRef] - Zhang, Y.; Jiang, S.; Zhu, X.; Zhao, Y. A molecular dynamics study of intercrystalline crack propagation in nano-nickel bicrystal films with (010) twist boundary. Eng. Fract. Mech.
**2016**, 168, 147–159. [Google Scholar] [CrossRef] - Zhang, Y.; Jiang, S.; Zhu, X.; Zhao, Y. Influence of twist angle on crack propagation of nanoscale bicrystal nickel film based on molecular dynamics simulation. Phys. E Low-Dimens. Syst. Nanostruct.
**2017**, 87, 281–294. [Google Scholar] [CrossRef] - Zhang, J.; Ghosh, S. Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material. J. Mech. Phys. Solids
**2013**, 61, 1670–1690. [Google Scholar] [CrossRef] - Glenn, J.; Martyna, D.J.; Tobias, M.L. Klein. Constant pressure molecular dynamics algorithms. J. Chem. Phys.
**1994**, 101, 4177–4189. [Google Scholar] - Parrinello, M.; Rahman, A. Polymorphic transitions in single crystal: A new molecular dynamics method. J. Appl. Phys.
**1981**, 52, 7182–7190. [Google Scholar] [CrossRef] - Tuckerman, M.E.; Alejandre, J.; López-Rendón, R.; Jochim, A.L.; Martyna, G.J. A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble. J. Phys. A Math. Gen.
**2006**, 39, 5629–5651. [Google Scholar] [CrossRef] - Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Model. Simul. Mater. Sci. Eng.
**2010**, 18, 015012. [Google Scholar] [CrossRef] - Heyes, D.M. Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries. Phys. Rev. B
**1994**, 49, 755–764. [Google Scholar] [CrossRef] - Sirk, T.W.; Moore, S.; Brown, E.F. Characteristics of thermal conductivity in classical water models. J. Chem. Phys.
**2013**, 138, 064505. [Google Scholar] [CrossRef] [PubMed] - Aidan, P.; Thompson, S.J.; Plimpton, W.M. General formation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys.
**2009**, 131, 154107. [Google Scholar] - Honeycutt, J.D.; Andersen, H.C. Andersen. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem.
**1987**, 91, 4950–4963. [Google Scholar] [CrossRef] - Faken, D.; Jónsson, H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci.
**1994**, 2, 279–286. [Google Scholar] [CrossRef] - Lee, B.-J.; Shim, J.-H.; Baskes, M.I. Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B
**2003**, 68, 144112. [Google Scholar] [CrossRef] - Ackland, G.J.; Tichy, G.; Vitek, V.; Finnis, M.W. Simple N-body potentials for the noble metals and nickel. Philos. Mag. A
**1987**, 56, 735–756. [Google Scholar] [CrossRef] - Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B
**1986**, 33, 7983–7991. [Google Scholar] [CrossRef] - Sainath, G.; Choudhary, B.K. Atomistic simulations on ductile-brittle transition in <111> BCC Fe nanowires. J. Appl. Phys.
**2017**, 122, 095101. [Google Scholar] - Gordon, P.A.; Neeraj, T.; Luton, M.J.; Farkas, D. Crack-tip deformation mechanisms in α-Fe and binary Fe alloys: An atomistic study on single crystals. Metall. Mater. Trans. A
**2007**, 38A, 2191–2202. [Google Scholar] [CrossRef] - Sainath, G.; Nagesha, A. Atomistic simulations of twin boundary effect on the crack growth behavior in BCC Fe. Trans. Indian Natl. Acad. Eng.
**2022**, 7, 433–439. [Google Scholar] [CrossRef]

**Figure 1.**The MD model of FCC single-crystal Ni with a central cylindrical nanohole: (

**a**) the size and orientation of simulated region and (

**b**) single-crystal Ni with cylindrical nanohole.

**Figure 2.**The stress–strain behavior of single-crystal Ni under the (

**a**) MEAM potential, (

**b**) EAM/FS potential, and (

**c**) EAM potential. The failure location is marked by the solid arrow.

**Figure 3.**The elastic strain ${\mathsf{\epsilon}}_{\mathrm{e}}$, total strain ${\mathsf{\epsilon}}_{\mathrm{t}}$ and accumulated plastic strain ${\mathsf{\epsilon}}_{\mathrm{p}}$ of single-crystal Ni under different styles of interatomic potentials.

**Figure 4.**The contour plots of the atomic tensile stress field and nanohole growth states at different tensile strains (MEAM potential).

**Figure 5.**The contour plots of the atomic tensile stress field and crack growth states at different tensile strains (EAM/FS potential).

**Figure 7.**The contour plots of the atomic tensile field and crack growth states at different tensile strains (EAM potential).

**Figure 8.**The crack length–strain curve of single-crystal Ni at different styles of potentials. The symbol ‘×’ denotes the fracture point of the tensile model.

MEAM | EAM/FS | EAM | ||
---|---|---|---|---|

Surface energy (erg/cm^{2}) | (100) plane | 1943 | 1444 | 1580 |

(110) plane | 2057 | 1548 | 1730 | |

(111) plane | 1606 | 1153 | 1450 | |

Stacking fault energy (erg/cm^{2}) | 125 | 33 | -- |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Qin, X.; Liang, Y.; Gu, J.; Peng, G.
The Effect of Interatomic Potentials on the Nature of Nanohole Propagation in Single-Crystal Nickel: A Molecular Dynamics Simulation Study. *Crystals* **2023**, *13*, 585.
https://doi.org/10.3390/cryst13040585

**AMA Style**

Qin X, Liang Y, Gu J, Peng G.
The Effect of Interatomic Potentials on the Nature of Nanohole Propagation in Single-Crystal Nickel: A Molecular Dynamics Simulation Study. *Crystals*. 2023; 13(4):585.
https://doi.org/10.3390/cryst13040585

**Chicago/Turabian Style**

Qin, Xinmao, Yilong Liang, Jiabao Gu, and Guigui Peng.
2023. "The Effect of Interatomic Potentials on the Nature of Nanohole Propagation in Single-Crystal Nickel: A Molecular Dynamics Simulation Study" *Crystals* 13, no. 4: 585.
https://doi.org/10.3390/cryst13040585