Preparation and Performance of Highly Stable Cathode Material Ag2V4O11 for Aqueous Zinc-Ion Battery
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Process and Materials
2.2. Materials Characterization
2.3. Electrochemical Measurements
3. Results and Discussions
Cathode Material | Potential Window (V) | Electrolyte | Specific Capacity (mAh·g−1) | Cycle Performance (mAh·g−1) | Ref. |
---|---|---|---|---|---|
Ag1.2V3O8 | 0.4–1.4 | 2 M ZnSO4 | ~350 (0.05 A·g−1) | / | [24] |
Ag0.333V2O5@V2O5·nH2O | 0.2–1.8 | 3 M Zn(CF3SO3)2 | 312.1 (0.5 A·g−1) | 261.7, (after 500 cycles at 0.5 A·g−1) | [25] |
Ag2V4O11@rGO-90 | 0.3–1.6 | 1 M ZnSO4 | 328 (0.1 A·g−1) | ~150, (after 3000 cycles at 5.0 A·g−1) | [26] |
Ag0.333V2O5 | 0.2–1.6 | 2 M Zn(CF3SO3)2 | 215 (0.1 A·g−1) | ~80, (after 700 cycles at 3.0 A·g−1) | [28] |
V2O5 | 0.3–1.5 | 3 M Zn(CF3SO3)2 | 300 (0.1 A·g−1) | 120, (after 3000 cycles at 2.0 A·g−1) | [31] |
Cu3V2O7(OH)2·2H2O | 0.2–1.6 | 2.5 M Zn(CF3SO3)2 | 216 (0.1 A·g−1) | 92, (after 500 cycles at 0.5 A·g−1) | [32] |
CrVO3 | 0.4–1.6 | 3 M Zn(CF3SO3)2 | 188 (0.05 A·g−1) | 112.8, (after 1000 cycles at 5.0 A·g−1) | [33] |
Cu3V2O7(OH)2·2H2O | 0.4–1.6 | 3 M Zn(CF3SO3)2 | 269.2 (0.2 A·g−1) | 101.6, (after 3000 cycles at 4.0 A·g−1) | [34] |
VO2 | 0.3−1.5 | 3 M Zn(CF3SO3)2 | 375 (0.1 A·g−1) | 220, (after 2000 cycles at 5.0 A·g−1) | [37] |
CaV6O16·3H2O | 0–1.4 | 3 M Zn(CF3SO3)2 | 320 (0.05 A·g−1) | 125, (after 70 cycles at 4.0 A·g−1) | [38] |
Ag2V4O11 | 0.3–1.3 | 3 M Zn(CF3SO3)2 | 251.5 (0.5 A·g−1) | 117.6, (after 1000 cycles at 3.0 A·g−1) | Our work |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shang, Z.; Wang, S.; Zhang, H.; Zhang, W.; Lu, S.; Lu, K. Advances in the regulation of kinetics of cathodic H+/Zn2+ interfacial transport in aqueous Zn/MnO2 electrochemistry. Nanoscale 2022, 14, 14433–14454. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, Y.; Liu, D.; Zheng, D.; Dai, X.; Shi, W.; Cao, X. Metal-Organic Framework-Based Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Function. Chem. Rec. 2022, 22, e202200079. [Google Scholar] [CrossRef]
- Grignon, E.; Battaglia, M.A.; Schon, B.T.; Seferos, S.D. Aqueous zinc batteries: Design principles toward organic cathodes for grid application. iScience 2022, 25, 104204. [Google Scholar] [CrossRef]
- Reddy, N.I.; Akkinepally, B.; Manjunath, V.; Neelima, G.; Reddy, M.V.; Shim, J. SnO2 Quantum Dots Distributed along V2O5 Nanobelts for Utilization as a High-Capacity Storage Hybrid Material in Li-Ion Batteries. Molecules 2021, 26, 7262. [Google Scholar] [CrossRef] [PubMed]
- Akkinepally, B.; Reddy, I.N.; Manjunath, V.; Reddy, M.V.; Mishra, Y.K.; Ko, T.J.; Zaghib, K.; Shim, J. Temperature effect and kinetics, LiZr2(PO4)3 and Li1.2Al0.2Zr1.8(PO4)3 and electrochemical properties for rechargeable ion batteries. Int. J. Energy Res. 2022, 46, 14116–14132. [Google Scholar] [CrossRef]
- Imran, M.; Afzal, M.A.; Iqbal, M.W.; Hegazy, H.H.; Iqbal, M.Z.; Mumtaz, S.; Qureshi, R. Manganese (Sulfide/Oxide) based electrode materials advancement in supercapattery devices. Mater. Sci. Semicond. Process. 2023, 158, 107366. [Google Scholar] [CrossRef]
- Daskalakis, S.; Wang, M.; Carmalt, C.J.; Vernardou, D. Electrochemical Investigation of Phenethylammonium Bismuth Iodide as Anode in Aqueous Zn2+ Electrolytes. Nanomaterials 2021, 11, 656. [Google Scholar] [CrossRef]
- Sun, Q.; Cheng, H.; Nie, W.; Lu, X.; Zhao, H. A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-Ion Batteries. Chem. Asian J. 2022, 17, e202200067. [Google Scholar] [CrossRef]
- Huang, M.; Wang, X.; Liu, X.; Mai, L. Fast Ionic Storage in Aqueous Rechargeable Batteries: From Fundamentals to Applications. Adv. Mater. 2022, 34, e2105611. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, F.; Arandiyan, H.; Guan, P.; Liu, Y.; Wang, Y.; Zhao, C.; Wang, D.; Chu, D. Oxide-based cathode materials for rechargeable zinc ion batteries: Progresses and challenges. J. Energy Chem. 2021, 57, 516–542. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X. Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries. J. Energy Chem. 2021, 56, 223–237. [Google Scholar] [CrossRef]
- Chen, D.; Lu, M.; Cai, D.; Yang, H.; Han, W. Recent advances in energy storage mechanism of aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 712–726. [Google Scholar] [CrossRef]
- Zhang, Y.; Ang, E.H.; Dinh, K.N.; Rui, K.; Lin, H.; Zhu, J.; Yan, Q. Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries. Mater. Chem. Front. 2021, 5, 744–762. [Google Scholar] [CrossRef]
- Deng, L.; Chen, H.; Wu, J.; Yang, Z.; Rong, Y.; Fu, Z. V2O3 as cathode of zinc ion battery with high stability and long cycling life. Ionics 2021, 27, 3393–3402. [Google Scholar] [CrossRef]
- Javed, S.M.; Lei, H.; Wang, Z.; Liu, B.; Cai, X.; Mai, W. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573. [Google Scholar] [CrossRef]
- Wu, S.; Ding, Y.; Hu, L.; Zhang, X.; Huang, Y.; Chen, S. Amorphous V2O5 as high performance cathode for aqueous zinc ion battery. Mater. Lett. 2020, 277, 128268. [Google Scholar] [CrossRef]
- Hu, J.; Chen, H.; Xiang, K.; Xiao, L.; Chen, W.; Liao, H.; Chen, H. Preparation for V6O13@hollow carbon microspheres and their remarkable electrochemical performance for aqueous zinc-ion batteries. J. Alloys Compd. 2021, 856, 157085. [Google Scholar] [CrossRef]
- Wei, T.; Li, Q.; Yang, G.; Wang, C. High-rate and durable aqueous zinc ion battery using dendritic V10O24·12H2O cathode material with large interlamellar spacing. Electrochim. Acta 2018, 287, 60–67. [Google Scholar] [CrossRef]
- Liu, W.; Dong, L.; Jiang, B.; Huang, Y.; Wang, X.; Xu, C.; Kang, Z.; Mou, J.; Kang, F. Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries. Electrochim. Acta 2019, 320, 134565. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, Y.; Zuo, C.; Tang, W.; Liu, G.; Wang, S.; Cai, W.; Dong, S.; Luo, P. Adjusting the Valence State of Vanadium in VO2 (B) by Extracting Oxygen Anions for High-Performance Aqueous Zinc-Ion Batteries. ChemSusChem 2021, 14, 971–978. [Google Scholar] [CrossRef]
- Hu, K.; Jin, D.; Zhang, Y.; Ke, L.; Shang, H.; Yan, Y.; Lin, H.; Rui, K.; Zhu, J. Metallic vanadium trioxide intercalated with phase transformation for advanced aqueous zinc-ion batteries. J. Energy Chem. 2021, 61, 594–601. [Google Scholar] [CrossRef]
- Du, M.; Zhang, F.; Zhang, X.; Dong, W.; Sang, Y.; Wang, J.; Liu, H.; Wang, S. Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries. Sci. China Chem. 2020, 63, 1767–1776. [Google Scholar] [CrossRef]
- Shan, L.; Zhou, J.; Han, M.; Fang, G.; Cao, X.; Wu, X.; Liang, S. Reversible Zn-driven reduction displacement reaction in aqueous zinc-ion battery. J. Mater. Chem. A 2019, 7, 7355–7359. [Google Scholar] [CrossRef]
- Guo, S.; Fang, G.; Liang, S.; Chen, M.; Wu, X.; Zhou, J. Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries. Acta Mater. 2019, 180, 51–59. [Google Scholar] [CrossRef]
- Zeng, J.; Chao, K.; Wang, W.; Wei, X.; Liu, C.; Peng, H.; Zhang, Z.; Guo, X.; Li, G. Silver vanadium oxide@water-pillared vanadium oxide coaxial nanocables for superior zinc ion storage properties. Inorg. Chem. Front. 2019, 6, 2339–2348. [Google Scholar] [CrossRef]
- Puttaswamy, R.; Beere, H.K.; Yadav, P.; Jalalah, M.; Faisal, M.; Harraz, F.A.; Ghosh, D. Troubleshooting the Limited Zn2+ Storage Performance of the Ag2V4O11 Cathode in Zinc Sulfate Electrolytes via Favorable Synergism with Reduced Graphene Oxides. ACS Appl. Energy Mater. 2022, 5, 8292–8303. [Google Scholar] [CrossRef]
- Cao, X.; Zhan, H.; Xie, J.; Zhou, Y. Synthesis of Ag2V4O11 as a cathode material for lithium battery via a rheological phase method. Mater. Lett. 2006, 60, 435–438. [Google Scholar] [CrossRef]
- Lan, B.; Peng, Z.; Chen, L.; Tang, C.; Dong, S.; Chen, C.; Zhou, M.; Chen, C.; An, Q.; Luo, P. Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries. J. Alloys Compd. 2019, 787, 9–16. [Google Scholar] [CrossRef]
- Xu, W.; Sun, C.; Wang, N.; Liao, X.; Zhao, K.; Yao, G.; Sun, Q.; Cheng, H.; Wang, Y.; Lu, X. Sn stabilized pyrovanadate structure rearrangement for zinc ion battery. Nano Energy 2021, 81, 105584. [Google Scholar] [CrossRef]
- Tian, M.; Liu, C.; Zheng, J.; Jia, X.; Jahrman, E.P.; Seidler, G.T.; Long, D.; Atif, M.; Alsalhi, M.; Cao, G. Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Mater. 2020, 29, 9–16. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, Y.; Chen, W.; Niu, Y.; Wu, S.; Zhang, X.; Hu, L. V-MOF derived porous V2O5 nanoplates for high performance aqueous zinc ion battery. Appl. Surf. Sci. 2019, 493, 368–374. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Z.; Wu, J.; Chen, H.; Meng, J. Energy storage performance and mechanism of the novel copper pyrovanadate Cu3V2O7(OH)2·2H2O cathode for aqueous zinc ion batteries. Electrochim. Acta 2020, 330, 135347. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, H.; Xiang, B.; Zhou, Y.; Dou, L.; Dong, G. Chemically assembling chromium vanadate into an urchin-like porous rich matrix with ultrathin nanosheets for rapid Zn2+ storage. J. Colloid Interface Sci. 2021, 597, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhang, H.; Xiang, B.; Hao, J.; Yan, L.; Zhu, C. Oxygen vacancy-rich, binder-free copper pyrovanadate for zinc ion storage. Chem. Eng. J. 2021, 420, 130474. [Google Scholar] [CrossRef]
- He, D.; Peng, Y.; Ding, Y.; Xu, X.; Huang, Y.; Li, Z.; Zhang, X.; Hu, L. Suppressing the skeleton decomposition in Ti-doped NH4V4O10 for durable aqueous zinc ion battery. J. Power Sources 2021, 484, 229284. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X. Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity. Nano Energy 2021, 86, 106124. [Google Scholar] [CrossRef]
- Li, Z.; Ren, Y.; Mo, L.; Liu, C.; Hsu, K.; Ding, Y.; Zhang, X.; Li, X.; Hu, L.; Ji, D.; et al. Impacts of Oxygen Vacancies on Zinc Ion Intercalation in VO2. ACS Nano 2020, 14, 5581–5589. [Google Scholar] [CrossRef]
- Xu, N.; Lian, X.; Huang, H.; Ma, Y.; Li, L.; Peng, S. CaV6O16·3H2O nanorods as cathode for high-performance aqueous zinc-ion battery. Mater. Lett. 2021, 287, 129285. [Google Scholar] [CrossRef]
- Qin, H.; Chen, L.; Wang, L.; Chen, X.; Yang, Z. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta 2019, 306, 307–316. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Geng, H.; Yang, Y.; Rui, X.; Li, C.C. Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. J. Power Sources 2019, 441, 227192. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Y.; Liu, S.; Chen, S.; Wen, N.; Zeng, X.; Dong, Y.; Huang, C.; Kuang, Q.; Zhao, Y. Electrochemically Induced Structural and Morphological Evolutions in Nickel Vanadium Oxide Hydrate Nanobelts Enabling Fast Transport Kinetics for High-Performance Zinc Storage. ACS Appl. Mater. Interfaces 2020, 12, 24726–24736. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Liu, Y.; Wang, H.; Yang, S.; Liu, C.; Pang, H. Crystal water enlarging the interlayer spacing of ultrathin V2O5·4VO2·2.72H2O nanobelts for high-performance aqueous zinc-ion battery. Chem. Eng. J. 2021, 411, 128533. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Xu, L.; Gao, Z.; Zheng, J.; Wang, Q.; Meng, C.; Wang, J. Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chem. Eng. J. 2020, 382, 122844. [Google Scholar] [CrossRef]
- Hu, F.; Xie, D.; Zhao, D.; Song, G.; Zhu, K. Na2V6O16·2.14H2O nanobelts as a stable cathode for aqueous zinc-ion batteries with long-term cycling performance. J. Energy Chem. 2019, 38, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Xiao, H.; Feng, H.; Lin, Z.; Gao, H.; He, W.; Lu, X. Defect modulation of ZnMn2O4 nanotube arrays as high-rate and durable cathode for flexible quasi-solid-state zinc ion battery. Chem. Eng. J. 2021, 422, 129890. [Google Scholar] [CrossRef]
- Sun, J.; Li, D.; Wang, S.; Xu, J.; Liu, W.; Ren, M.; Kong, F.; Wang, S.; Yang, L. Mn5O8—Graphene hybrid electrodes for high rate capability and large capacity aqueous rechargeable zinc ion batteries. J. Alloys Compd. 2021, 867, 159034. [Google Scholar] [CrossRef]
- Ni, Q.; Jiang, H.; Sandstrom, S.; Bai, Y.; Ren, H.; Wu, X.; Guo, Q.; Yu, D.; Wu, C.; Ji, X. A Na3V2(PO4)2O1.6F1.4 Cathode of Zn-Ion Battery Enabled by a Water-in-Bisalt Electrolyte. Adv. Funct. Mater. 2020, 30, 2003511. [Google Scholar] [CrossRef]
- Wu, S.; Liu, S.; Hu, L.; Chen, S. Constructing electron pathways by graphene oxide for V2O5 nanoparticles in ultrahigh-performance and fast charging aqueous zinc ion batteries. J. Alloys Compd. 2021, 878, 160324. [Google Scholar] [CrossRef]
- Shan, L.; Yang, Y.; Zhang, W.; Chen, H.; Fang, G.; Zhou, J.; Liang, S. Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 2019, 18, 10–14. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Sun, H.; Li, Y.; Yang, J.; Wang, C.; Kang, F. Mechanistic investigation of silver vanadate as superior cathode for high rate and durable zinc-ion batteries. J. Colloid Interface Sci. 2020, 560, 659–666. [Google Scholar] [CrossRef]
Sample | Rs (Ω) | Rct (Ω) | W0-R (Ω) |
---|---|---|---|
Ag2V4O11-200 | 1.94 | 58 | 213.4 |
Ag2V4O11-180 | 3.19 | 34.24 | 109.4 |
Ag2V4O11-160 | 2.08 | 72.21 | 246.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, X.; Zhong, J.; Hu, X.; Zhang, F. Preparation and Performance of Highly Stable Cathode Material Ag2V4O11 for Aqueous Zinc-Ion Battery. Crystals 2023, 13, 565. https://doi.org/10.3390/cryst13040565
Tong X, Zhong J, Hu X, Zhang F. Preparation and Performance of Highly Stable Cathode Material Ag2V4O11 for Aqueous Zinc-Ion Battery. Crystals. 2023; 13(4):565. https://doi.org/10.3390/cryst13040565
Chicago/Turabian StyleTong, Xiangling, Junyuan Zhong, Xinxin Hu, and Fan Zhang. 2023. "Preparation and Performance of Highly Stable Cathode Material Ag2V4O11 for Aqueous Zinc-Ion Battery" Crystals 13, no. 4: 565. https://doi.org/10.3390/cryst13040565
APA StyleTong, X., Zhong, J., Hu, X., & Zhang, F. (2023). Preparation and Performance of Highly Stable Cathode Material Ag2V4O11 for Aqueous Zinc-Ion Battery. Crystals, 13(4), 565. https://doi.org/10.3390/cryst13040565