Features of the Preparation of Ni-Doped Bismuth Tantalate Pyrochlore
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Ceramic Synthesis
3.2. Study of Pyrochlore Stability Area
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subramanian, M.A.; Aravamudan, G.; Subba Rao, G.V. Oxide pyrochlores—A review. Prog. Solid State Chem. 1983, 15, 55–143. [Google Scholar] [CrossRef]
- Zou, Z.; Ye, J.; Arakawa, H. Preparation, structural and optical properties of a new class of compounds, Bi2MNbO7 (M = Al, Ga, In). Mater. Sci. Eng. B 2001, 79, 83–85. [Google Scholar] [CrossRef]
- Valant, M.; Babu, G.S.; Vrcon, M.; Kolodiazhnyi, T.; Axelsson, A.-K. Pyrochlore Range from Bi2O3–Fe2O3–TeO3 System for LTCC and Photocatalysis and the Crystal Structure of New Bi3(Fe0.56Te0.44)3O11. J. Am. Ceram. Soc. 2011, 95, 644–650. [Google Scholar] [CrossRef]
- Vanderah, T.A.; Siegrist, T.; Lufaso, M.W.; Yeager, M.C.; Roth, R.S.; Nino, J.C.; Yates, S. Phase Formation and Properties in the System Bi2O3:2CoO1+x:Nb2O5. Eur. J. Inorgan. Chem. 2006, 23, 4908–4914. [Google Scholar] [CrossRef]
- Miles, G.C.; West, A.R. Pyrochlore Phases in the System ZnO-Bi2O3-Sb2O5: I. Stoichiometries and Phase Equilibria. J. Am. Ceram. Soc. 2006, 89, 1042–1046. [Google Scholar] [CrossRef]
- Egorysheva, A.V.; Ellert, O.G.; Maksimov, Y.V.; Volodin, V.D.; Efimov, N.N.; Novotortsev, V.M. Subsolidus phase equilibria and magnetic characterization of the pyrochlore in the Bi2O3–Fe2O3–Sb2Ox system. J. Alloys Compd. 2013, 579, 311–314. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Nekipelov, S.V.; Sivkov, D.V.; Sivkov, V.N.; Lebedev, A.M.; Chumakov, R.G.; Makeev, B.A.; Kharton, V.V.; et al. Spectroscopic characterization of cobalt doped bismuth tantalate pyrochlore. Solid State Sci. 2022, 125, 106820. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Sekushin, N.A.; Semenov, V.G.; Fedorova, A.V.; Selyutin, A.A.; Krzhizhanovskaya, M.G.; Lutoev, V.P.; Makeev, B.A.; Kharton, V.V.; Sivkov, D.N.; et al. Dielectric properties, Mössbauer study, ESR spectra of Bi2FeTa2O9.5 with pyrochlore structure. J. Alloys Compd. 2022, 903, 163928. [Google Scholar] [CrossRef]
- Giampaoli, G.; Siritanon, T.; Day, B.; Li, J.; Subramanian, M.A. Temperature in-dependent low loss dielectrics based on quaternary pyrochlore oxides. Prog. Solid State Chem. 2018, 50, 16–23. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Zheng, H. BMN-based transparent capacitors with high dielectric tunability. J. Alloys Compd. 2017, 699, 68–72. [Google Scholar] [CrossRef]
- Du, H.; Yao, X. Structural trends and dielectric properties of Bi-based pyrochlores. J. Mater. Sci. Mater. Electron. 2004, 15, 613–616. [Google Scholar] [CrossRef]
- Guo, Q.; Li, L.; Yu, S.; Sun, Z.; Zheng, H.; Li, J.; Luo, W. Temperature–stable dielectrics based on Cu–doped Bi2Mg2/3Nb4/3O7 pyrochlore ceramics for LTCC. Ceram. Int. 2018, 44, 333–338. [Google Scholar] [CrossRef]
- Valant, M.; Suvorov, D. The Bi2O3–Nb2O5–NiO Phase Diagram. J. Am. Ceram. Soc. 2005, 88, 2540–2543. [Google Scholar] [CrossRef]
- Valant, M. Dielectric Relaxations in Bi2O3–Nb2O5–NiO Cubic Pyrochlores. J. Am. Ceram. Soc. 2009, 92, 955–958. [Google Scholar] [CrossRef]
- Jin, Y.X.; Li, L.X.; Dong, H.L.; Yu, S.H.; Xu, D. Structures, phase transformations, and dielectric properties of (1−x)Bi2Zn2/3Nb4/3O7–xBi1.5NiNb1.5O7 pyrochlore ceramics prepared by aqueous sol–gel method. J. Alloys Compd. 2015, 622, 200–205. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Nekipelov, S.V.; Kharton, V.V.; Sekushin, N.A. Thermal Expansion, XPS Spectra, and Structural and Electrical Properties of a New Bi2NiTa2O9 Pyrochlore. Inorg. Chem. 2021, 60, 4924–4934. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Sekushin, N.A.; Kharton, V.V.; Koroleva, A.V.; Nekipelov, S.V.; Sivkov, D.V.; Sivkov, V.N.; Makeev, B.A.; Lebedev, A.M.; et al. Novel Ni-Doped Bismuth–Magnesium Tantalate Pyrochlores: Structural and Electrical Properties, Thermal Expansion, X-ray Photoelectron Spectroscopy, and Near-Edge X-ray Absorption Fine Structure Spectra. ACS Omega 2021, 6, 23262–23273. [Google Scholar] [CrossRef]
- Abdullah, A.; Khalid, W.E.F.W.; Abdullah, S.Z. Synthesis and Characterization of Bismuth Nickel Tantalate Pyrochlore. Appl. Mech. Mater. 2015, 749, 30–35. [Google Scholar] [CrossRef]
- Liang, K.; Gao, L.; Fang, Z.; Liu, Z.; Guan, Z.; Chen, H.; Zhang, J. Effects of Ni2+ substitution on the structure and dielectric properties of Bi1.5MgNb1.5O7 cubic pyrochlores. J. Eur. Ceram. Soc. 2020, 41, 3425–3431. [Google Scholar] [CrossRef]
- Ning, P.; Li, L.; Zhang, X.; Wang, M.; Xia, W. Enhanced tunability of Bi3/2MNb3/2O7 (M = Zn, Mg, Ni) thin films. Mater. Lett. 2012, 87, 5–8. [Google Scholar] [CrossRef]
- Qasrawi, A.F.; Nazzal, E.M.; Mergen, A. Structural, optical, electrical and dielectric properties of Bi1.5 Zn0.92Nb1.5−xNxO6.92−3x/2 solid solution. Adv. Appl. Ceram. 2012, 111, 165–170. [Google Scholar] [CrossRef]
- Yee, K.A.; Han, K.R.; Kimp, H.T. The effect of V2O5 on the sintability and physical properties of Bi2O3–NiO–Nb2O5 and Bi2O3–ZnO–Nb2O5 temperature-stable dielectrics. J. Mater. Sci. 1999, 34, 4699–4704. [Google Scholar] [CrossRef]
- Nguyen, B.; Liu, Y.; Withers, R.L. The local crystal chemistry and dielectric properties of the cubic pyrochlore phase in the Bi2O3–M2+O–Nb2O5 (M2+ = Ni2+ and Mg2+) systems. J. Solid State Chem. 2007, 180, 549–557. [Google Scholar] [CrossRef]
- Nguyen, H.B.; Norén, L.; Liu, Y.; Withers, R.L.; Wei, X.; Elcombe, M.M. The disordered structures and low temperature dielectric relaxation properties of two misplaced-displacive cubic pyrochlores found in the Bi2O3–MIIO–Nb2O5 (M = Mg, Ni) systems. J. Solid State Chem. 2007, 180, 2558–2565. [Google Scholar] [CrossRef]
- Gao, L.; Liang, K.; Guan, Z.; Liu, Z.; Fang, Z.; Chen, H.; Zhang, J. Disordered Structures and Dielectric Properties of Ni-Doped Bismuth Magnesium Niobate Pyrochlores. J. Phys. Chem. C 2021, 125, 27793–27799. [Google Scholar] [CrossRef]
- Fang, Z.; Gao, L.; Chen, H.; Liang, K.; Liu, Z.; Guan, Z.; Zhang, J. XPS study of probing evidence for displacive disorder in Ni-doped bismuth magnesium niobate pyrochlore. Mater. Sci. Eng. B 2020, 259, 114601. [Google Scholar] [CrossRef]
- Egorysheva, A.V.; Ellert, O.G.; Zubavichus, Y.V.; Gajtko, O.M.; Efimov, N.N.; Svetogorov, R.D.; Murzin, V.Y. New complex bismuth oxides in the Bi2O3–NiO–Sb2O5 system and their properties. J. Solid State Chem. 2015, 225, 97–104. [Google Scholar] [CrossRef]
- Koroleva, M.S.; Piir, I.V.; Istomina, E.I. Synthesis, structure and electrical properties of Mg-, Ni-codoped bismuth niobates. Chim. Techno Acta 2017, 4, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Sirotinkin, V.P.; Bush, A.A. Preparation and Dielectric Properties of Bi1.5MNb1.5O7 (M = Cu, Mg, Mn, Ni, Zn) Pyrochlore Oxides. Inorg. Mater. 2003, 39, 974–977. [Google Scholar] [CrossRef]
- Cann, D.P.; Randall, C.A.; Shrout, T.R. Investigation of the Dielectric Properties of Bismuth Pyrochlore. Solid State Commun. 1996, 100, 529–534. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–766. [Google Scholar] [CrossRef]
- VMuraviev, V.A.; Makeev, B.A.; Krzhizhanovskaya, M.G.; Korolev, R.I.; Zhuk, N.A. Synthesis of Bi2NiTa2O9 with a pyrochlore-type structure. Glass Ceram. 2022, 95, 40–46. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Belyy, V.A.; Kharton, V.V.; Chichineva, A.I. Phase transformations and thermal expansion of α- and β-BiTaO4 and the high-temperature modification γ-BiTaO4. Chem. Mater. 2020, 32, 5493–5501. [Google Scholar] [CrossRef]
- McCauley, R.A. Structural Characteristics of Pyrochlore Formation. J. Appl. Phys. 1980, 51, 290–294. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muravyov, V.A.; Krzhizhanovskaya, M.G.; Makeev, B.A.; Nizovtsev, A.N.; Nekipelov, S.V.; Sivkov, V.N.; Sivkov, D.V.; Zhuk, N.A. Features of the Preparation of Ni-Doped Bismuth Tantalate Pyrochlore. Crystals 2023, 13, 474. https://doi.org/10.3390/cryst13030474
Muravyov VA, Krzhizhanovskaya MG, Makeev BA, Nizovtsev AN, Nekipelov SV, Sivkov VN, Sivkov DV, Zhuk NA. Features of the Preparation of Ni-Doped Bismuth Tantalate Pyrochlore. Crystals. 2023; 13(3):474. https://doi.org/10.3390/cryst13030474
Chicago/Turabian StyleMuravyov, Vitaliy A., Maria G. Krzhizhanovskaya, Boris A. Makeev, Andrey N. Nizovtsev, Sergey V. Nekipelov, Viktor N. Sivkov, Danil V. Sivkov, and Nadezhda A. Zhuk. 2023. "Features of the Preparation of Ni-Doped Bismuth Tantalate Pyrochlore" Crystals 13, no. 3: 474. https://doi.org/10.3390/cryst13030474
APA StyleMuravyov, V. A., Krzhizhanovskaya, M. G., Makeev, B. A., Nizovtsev, A. N., Nekipelov, S. V., Sivkov, V. N., Sivkov, D. V., & Zhuk, N. A. (2023). Features of the Preparation of Ni-Doped Bismuth Tantalate Pyrochlore. Crystals, 13(3), 474. https://doi.org/10.3390/cryst13030474