Bending 90° Waveguides in Nd:YAG Crystal Fabricated by a Combination of Femtosecond Laser Inscription and Precise Diamond Blade Dicing
Abstract
:1. Introduction
2. Fabrication Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, J.; Cheng, Y.; Lu, Q.; de Aldana, J.R.V.; Hao, X.; Chen, F. Femtosecond laser written optical waveguides in z-cut MgO:LiNbO3 crystal: Fabrication and optical damage investigation. Opt. Mater. 2016, 57, 169–173. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Laversenne, L.; Colomb, T.; Depeursinge, C.; Salathé, R.; Pollinau, M.; Osellame, R.; Cerullo, G.; Laporta, P. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+: Sapphire. Appl. Phys. Lett. 2004, 85, 1122–1124. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, S.; Chen, F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: Fabrication and application. Opto-Electron. Adv. 2020, 3, 190042. [Google Scholar] [CrossRef]
- Sun, X.; Dong, X.; Hu, Y.; Li, H.; Chu, D.; Zhou, J.; Wang, C.; Duan, J.A. A robust high refractive index sensitivity fiber Mach–Zehnder interferometer fabricated by femtosecond laser machining and chemical etching. Sens. Actuat. A-Phys. 2015, 230, 111–116. [Google Scholar] [CrossRef]
- Ringleb, S.; Rademaker, K.; Nolte, S.; Tünnermann, A. Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses. Appl. Phys. B-Lasers O 2010, 102, 59–63. [Google Scholar] [CrossRef]
- Liao, Y.; Xu, J.; Cheng, Y.; Zhou, Z.H.; He, F.; Sun, H.Y.; Song, J.; Wang, X.S.; Xu, Z.Z.; Sugioka, K.; et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt. Lett. 2008, 33, 2281–2283. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.; Liu, L.; Song, Q.; Xu, L.; Wang, W. Intense directional lasing from a deformed square-shaped organic-inorganic hybrid glass microring cavity. Opt. Lett. 2003, 28, 1784–1786. [Google Scholar] [CrossRef] [PubMed]
- Skryabin, N.; Kalinkin, A.; Dyakonov, I.; Kulik, S. Femtosecond laser written depressed-cladding waveguide 2 × 2, 1 × 2 and 3 × 3 directional couplers in Tm3+:YAG crystal. Micromachines 2019, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Jiang, L.; Wang, S.; Xiao, H.; Lu, Y.; Tsai, H.L. A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing. Sensors 2011, 11, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Sahoo, P.; Arteaga-Sierra, F.; Dorrer, C.; Qiao, J. Pulse-propagation modeling and experiment for femtosecond-laser writing of waveguide in Nd:YAG. Crystals 2019, 9, 434. [Google Scholar] [CrossRef]
- Ródenas, A.; Torchia, G.A.; Lifante, G.; Cantelar, E.; Lamela, J.; Jaque, F.; Roso, L.; Jaque, D. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: Micro-spectroscopy experiments and beam propagation calculations. Appl. Phys. B-Lasers O 2009, 95, 85–96. [Google Scholar] [CrossRef]
- Pätzold, W.M.; Demircan, A.; Morgner, U. Low-loss curved waveguides in polymers written with a femtosecond laser. Opt. Express 2017, 25, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, D. Multimode silicon photonic waveguide corner-bend. Opt. Express 2020, 28, 9062–9071. [Google Scholar] [CrossRef]
- Lv, J.; Bai, J.; Zhou, K.M.; Mei, X.S.; Wang, K.D.; Li, M.; Cheng, G.H. Transmission performance of 90 degrees-bend optical waveguides fabricated in fused silica by femtosecond laser inscription. Opt. Lett. 2017, 42, 3470–3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruske, D.; Suntsov, S.; Ruter, C.E.; Kip, D. Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion. Opt. Express 2017, 25, 29374–29379. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.L.; Zhu, Q.F.; Liu, C.X. Optical planar and ridge waveguides in terbium gallium garnet crystals produced by ion implantation and precise diamond blade dicing. Opt. Mater. Express 2018, 8, 3288–3294. [Google Scholar] [CrossRef]
- Sun, J.; Gan, Y.C.; Xu, C. Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide. Opt. Lett. 2011, 36, 549–551. [Google Scholar] [CrossRef]
- Courjal, N.; Guichardaz, B.; Ulliac, G.; Rauch, J.Y.; Sadani, B.; Lu, H.; Bernal, M.P. High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing. J. Phys. D Appl. Phys. 2011, 44, 305101. [Google Scholar] [CrossRef] [Green Version]
- Volk, M.F.; Suntsov, S.; Rüter, C.E.; Kip, D. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing. Opt. Express 2016, 24, 1386–1391. [Google Scholar] [CrossRef]
- Suntsov, S.; Rüter, C.E.; Kip, D. Dual parameter fiber-integrated sensor for refractive index and temperature measurement based on Fabry–Perot micro-resonators. Appl. Opt. 2019, 58, 2076–2080. [Google Scholar] [CrossRef]
- Suntsov, S.; Rüter, C.E.; Schipkowski, T.; Kip, D. Fiber-integrated refractive index sensor based on a diced Fabry–Perot micro-resonator. Appl. Opt. 2017, 56, 9139–9143. [Google Scholar] [CrossRef] [PubMed]
- Calmano, T.; Paschk, A.G.; Müller, S.; Kränkel, C.; Huber, G. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Opt. Express 2013, 21, 25501–25508. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.F.; Yang, S.C.; Ren, Y.Y.; Liu, H.L. Beam splitters fabricated by nonlinear focusing of femtosecond laser writing in pure YAG crystal. Front. Phys. 2021, 9, 719757. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, N.; Yang, J.; Chen, F.; de Aldana, J.R.V.; Lu, Q. Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription. Opt. Express 2011, 19, 12503–12508. [Google Scholar] [CrossRef] [PubMed]
- Li, S.L.; Ye, Y.K.; Wang, M.W. Femtosecond laser written channel optical waveguide in Nd:YAG crystal. Opt. Laser Technol. 2014, 58, 89–93. [Google Scholar] [CrossRef]
- Li, S.L.; Han, P.G.; Shi, S.; Yao, Y.C.; Hu, B.; Wang, M.W.; Zhu, X.N. Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing. Opt. Express 2011, 19, 23958–23964. [Google Scholar] [CrossRef]
- Siebenmorgen, J.; Petermann, K.; Huber, G.; Rademaker, K.; Nolte, S.; Tünnermann, A. Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser. Appl. Phys. B 2009, 97, 251. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Wang, L.; Chen, F. Femtosecond laser direct writing of Nd:YAG waveguide with Type I modification: Positive refractive index change in track. Opt. Mater. 2021, 113, 110844. [Google Scholar] [CrossRef]
- Sun, X.; Sun, S.; Romero, C.; de Aldana, J.R.V.; Liu, F.; Jia, Y.; Chen, F. Femtosecond laser direct writing of depressed cladding waveguides in Nd:YAG with “ear-like” structures: Fabrication and laser generation. Opt. Express 2021, 29, 4296–4307. [Google Scholar] [CrossRef]
- Beresna, M.; Gecevičius, M.; Lancry, M.; Poumellec, B.; Kazansky, P.G. Broadband anisotropy of femtosecond laser induced nanogratings in fused silica. Appl. Phys. Lett. 2013, 103, 131903. [Google Scholar] [CrossRef]
- Ji, L.; Sun, X.; He, G.; Liu, Y.; Wang, X.; Yi, Y.; Chen, C.; Wang, F.; Zhang, D. Surface plasmon resonance refractive index sensor based on ultraviolet bleached polymer waveguide. Sens. Actuat. B-Chem. 2017, 244, 373–379. [Google Scholar] [CrossRef]
- Chen, L.; Liu, B.; Liu, J.; Yuan, J.H.; Chan, H.P.; Wu, T.; Wang, M.Y.; Wan, S.P.; He, X.D.; Wu, Q. U-shape panda polarization-maintaining microfiber sensor coated with graphene oxide for relative humidity measurement. J. Lighwave Technol. 2021, 39, 6308–6314. [Google Scholar] [CrossRef]
- Wang, J.; Munir, A.; Li, Z. Aptamer-Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay. Biosens. Bioelectron. 2009, 25, 124–129. [Google Scholar] [CrossRef] [PubMed]
Serial Number | WG1 | WG2 | WG3 |
---|---|---|---|
Group 1 | W = 20 µm D = 50 µm | W = 20 µm D = 75 µm | W = 20 µm D = 100 µm |
Group 2 | W = 15 µm D = 50 µm | W = 20µm D = 50 µm | W = 25 µm D = 50 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, H.; Yao, Y.; Wang, M.; Chen, N.; Zhang, L.; Bai, C.; Liu, T.; Ren, Y.; Jia, Y. Bending 90° Waveguides in Nd:YAG Crystal Fabricated by a Combination of Femtosecond Laser Inscription and Precise Diamond Blade Dicing. Crystals 2023, 13, 188. https://doi.org/10.3390/cryst13020188
Zha H, Yao Y, Wang M, Chen N, Zhang L, Bai C, Liu T, Ren Y, Jia Y. Bending 90° Waveguides in Nd:YAG Crystal Fabricated by a Combination of Femtosecond Laser Inscription and Precise Diamond Blade Dicing. Crystals. 2023; 13(2):188. https://doi.org/10.3390/cryst13020188
Chicago/Turabian StyleZha, Hao, Yicun Yao, Minghong Wang, Nankuang Chen, Liqiang Zhang, Chenglin Bai, Tao Liu, Yingying Ren, and Yuechen Jia. 2023. "Bending 90° Waveguides in Nd:YAG Crystal Fabricated by a Combination of Femtosecond Laser Inscription and Precise Diamond Blade Dicing" Crystals 13, no. 2: 188. https://doi.org/10.3390/cryst13020188
APA StyleZha, H., Yao, Y., Wang, M., Chen, N., Zhang, L., Bai, C., Liu, T., Ren, Y., & Jia, Y. (2023). Bending 90° Waveguides in Nd:YAG Crystal Fabricated by a Combination of Femtosecond Laser Inscription and Precise Diamond Blade Dicing. Crystals, 13(2), 188. https://doi.org/10.3390/cryst13020188