Synthesis of Black Phosphorene/P-Rich Transition Metal Phosphide NiP3 Heterostructure and Its Effect on the Stabilization of Black Phosphorene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.1.1. Preparation of BP
2.1.2. Preparation of Black Phosphorene
2.1.3. Deposition of TMPs on the 2D BP
2.2. Measurement
3. Results
3.1. XRD and Optical Absorption Analysis
3.2. SEM and HRTEM Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, M.Y.; Hao, Y.R.; Zhang, C.; Zhai, R.L.; Liu, B.Q.; Liu, W.C.; Wang, C.; Jafri, S.H.M.; Razaq, A.; Papadakis, R.; et al. Advances in Two-Dimensional Materials for Optoelectronics Applications. Crystals 2022, 12, 1087. [Google Scholar] [CrossRef]
- Yuan, Z.Q.; Hou, J.W.; Liu, K. Interfacing 2D Semiconductors with Functional Oxides: Fundamentals, Properties, and Applications. Crystals 2017, 7, 265. [Google Scholar] [CrossRef]
- Grillo, A.; Pelella, A.; Faella, E.; Giubileo, F.; Sleziona, S.; Kharsah, O.; Schleberger, M.; Bartolomeo, A.D. Memory Effects in Black Phosphorus Field Effect Transistors. 2D Mater. 2022, 9, 015028-1–015028-10. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Li, L.K.; Horng, J.; Wang, N.Z.; Yang, F.Y.; Yu, Y.J.; Zhang, Y.; Chen, G.; Watanabe, K.; Taniguchi, T.; et al. Strain-modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-effect Transistors. Nano Lett. 2017, 17, 6097–6103. [Google Scholar] [CrossRef]
- Li, X.Y.; Xiao, L.P.; Zhou, L.; Xu, Q.C.; Weng, J.; Xu, J.; Liu, B. Adaptive Bifunctional Electrocatalyst of Amorphous CoFe Oxide @ 2D Black Phosphorus for Overall Water Splitting. Angew. Chem. Int. Ed. 2020, 59, 21106–21113. [Google Scholar] [CrossRef]
- Liang, T.T.; Lenus, S.; Wang, A.Q.; Sakthivel, T.; Xie, J.P.; Dai, Z.F. Casting Light on Black Phosphorus-based Catalysts for Water Electrolysis: Approaches, Promotion Manners, and Perspectives. J. Environ. Chem. Eng. 2022, 10, 108018. [Google Scholar] [CrossRef]
- Baboukani, A.R.; Khakpour, I.; Drozd, V.; Allagui, A.; Wang, C.L. Single-Step Exfoliation of Black Phosphorus and Deposition of Phosphorene via Bipolar Electrochemistry for Capacitive Energy Storage Application. J. Mater. Chem. A 2019, 7, 25548–25556. [Google Scholar] [CrossRef]
- Pang, J.B.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R.G.; Gemming, T.; Liu, Z.F.; Rummeli, M.H. Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Adv. Energy Mater. 2017, 8, 1702093-1–1702093-43. [Google Scholar] [CrossRef]
- Yi, Y.; Yu, X.F.; Zhou, W.; Wang, J.; Chu, P.K. Two-dimensional Black Phosphorus: Synthesis, Modification, Properties, and Applications. Mater. Sci. Eng. 2017, 120, 1–33. [Google Scholar] [CrossRef]
- Sun, B.Q.; Xu, J.; Zhang, M.; He, L.F.; Zhu, H.; Chen, L.; Sun, Q.Q.; Zhang, D.W. Progress on Crystal Growth of Two-Dimensional Semiconductors for Optoelectronic Applications. Crystals 2018, 8, 252. [Google Scholar] [CrossRef]
- Mehta, R.K.; Kaul, A.B. Black Phosphorus-Molybdenum Disulfide Hetero-Junctions Formed with Ink-Jet Printing for Potential Solar Cell Applications with Indium-Tin-Oxide. Crystals 2021, 11, 560. [Google Scholar] [CrossRef]
- Zhang, M.; Biesold, G.M.; Lin, Z.Q. A Multifunctional 2D Black Phosphorene-based Platform for Improved Photovoltaics. Chem. Soc. Rev. 2021, 50, 13346–13371. [Google Scholar] [CrossRef]
- Zhang, M.; Ye, M.D.; Wang, W.L.; Ma, C.Y.; Wang, S.; Liu, Q.L.; Lian, T.Q.; Huang, J.S.; Lin, Z.Q. Synergistic Cascade Carrier Extraction Via Dual Interfacial Positioning of Ambipolar Black Phosphorene for High-efficiency Perovskite Solar Cells. Adv. Mater. 2020, 32, 2000999-1–2000999-9. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, S.W.; Xu, X.F.; Özyilmaz, B.; Loh, K.P. Interface Engineering of Layer by Layer Stacked Graphene Anodes for High-performance Organic Solarcells. Adv. Mater. 2011, 23, 1514–1518. [Google Scholar] [CrossRef] [PubMed]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid Exfoliation of Layered Materials. Science 2013, 340, 1226419-1–1226419-18. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, Z.; Zhang, H. Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications. Chem. Soc. Rev. 2013, 42, 1934–1946. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Z.; Huang, S.Y.; Deng, J.J.; Gangadharan, D.T.; Yang, F.; Xu, Z.H.; Giorgi, G.; Palummo, M.; Chaker, M.; Ma, D.L. Ice-assisted Synthesis of Black Phosphorus Nanosheets as a Metal-free Photocatalyst: 2D/2D Heterostructure for Broadband H2 Evolution. Adv. Funct. Mater. 2019, 29, 1902486. [Google Scholar] [CrossRef]
- Wild, S.; Fickert, M.; Mitrovic, A.; Lloret, V.; Neiss, C.; Vidal-Moya, J.A.; Rivero-Crespo, M.Á.; Leyva-Pérez, A.; Werbach, K.; Peterlik, H.; et al. Lattice Opening Upon Bulk Reductive Covalent Functionalization of Black Phosphorus. Angew. Chem. Int. Ed. 2019, 58, 5763–5768. [Google Scholar] [CrossRef]
- Song, H.; Wu, H.; Ren, T.; Yan, S.; Chen, T.; Shi, Y. Developments in Stability and Passivation Strategies for Black Phosphorus. Nano Res. 2021, 14, 4386–4397. [Google Scholar] [CrossRef]
- Sang, D.K.; Wang, H.D.; Guo, Z.N.; Xie, N.; Zhang, H. Recent Developments in Stability and Passivation Techniques of Phosphorene toward Next-Generation Device Applications. Adv. Funct. Mater. 2019, 29, 1903419-1–1903419-22. [Google Scholar] [CrossRef]
- Baboukani, A.R.; Aghaei, S.M.; Khakpour, I.; Drozd, V.; Aasi, A.; Wang, C.L. Defects Investigation of Bipolar Exfoliated Phosphorene Nanosheets. Surf. Sci. 2022, 720, 122052-1–122052-7. [Google Scholar] [CrossRef]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.F.; Tománek, D.; Ye, P.D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, X.Y.; Azcatl, A.; Addou, R.; McDonnell, S.; Ye, P.D.; Wallace, R.-M. Surface and Interfacial Study of Half Cycle Atomic Layer Deposited Al2O3 on Black Phosphorus. Microelectron. Eng. 2015, 147, 1–4. [Google Scholar] [CrossRef]
- Chen, Y.T.; Ren, R.; Pu, H.H.; Chang, J.B.; Mao, S.; Chen, J.-H. Field-effect Transistor Biosensors with Two-dimensional Black Pphosphorus Nanosheets. Biosens. Bioelectron. 2017, 89, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.Z.; Zhang, Y.; Zhang, C.; Tan, H.T.; Li, Z.; Abutaha, A.; Wu, X.L.; Xiong, Q.; Khor, K.A.; Hippalgaonkar, K.; et al. Multifunctional 0D-2D Ni2P Nanocrystals–black Phosphorus Heterostructure. Adv. Energy Mater. 2017, 7, 1601285-1–1601285-9. [Google Scholar] [CrossRef]
- Wang, J.H.; Liu, D.; Yu, X.-F. In-plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis. Chem. Int. Ed. 2018, 57, 2600–2604. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; She, X.; Chen, S.; Liu, H.; Li, D.; Wang, Y.; Zhang, H.; Yang, D.; Yao, X. Boosting Hydrogen Evolution Via Optimized Hydrogen Adsorption at the Interface of CoP3 and Ni2P. J. Mater. Chem. A 2018, 6, 5560–5565. [Google Scholar] [CrossRef]
- Beltrán-Suito, R.; Menezes, P.W.; Driess, M. Amorphous Outperforms Crystalline Nanomaterials: Surface Modifications of Molecularly Derived CoP Electro (pre) Catalysts for Efficient Water-Splitting. J. Mater. Chem. A 2019, 7, 15749–15756. [Google Scholar] [CrossRef]
- Pu, Z.H.; Zhao, J.H.; Amiinu, I.S.; Li, W.Q.; Wang, M.; He, D.P.; Mu, S.C. A Universal Synthesis Strategy for P-rich Noble Metal Diphosphide Based Electrocatalyst for Hydrogen Evolution Reactions. Energy Environ. Sci. 2019, 12, 952–957. [Google Scholar] [CrossRef]
- Fullenwarth, J.; Darwiche, A.; Soares, A.; Donnadieuc, B.; Monconduit, L. NiP3: A Promising Negative Electrode for Li- and Na-Ion Batteries. J. Mater. Chem. A 2014, 2, 2050–2059. [Google Scholar] [CrossRef]
- Tran, V.; Soklaski, R.; Liang, Y.; Yang, L. Layer-Controlled Band Gap and Anisotropic Excitons in Few-Layer Black Phosphorus. Phys. Rev. B 2014, 89, 235319-1–235319-6. [Google Scholar] [CrossRef]
- Qiao, J.; Kong, X.; Hu, Z.X.; Yang, F.; Ji, W. High-Mobility Transport Anisotropy and Linear Dichroism in Few-Layer Black Phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.W.; Huang, S.Y.; Chaves, A.; Song, C.Y.; Ongun Özçelik, V.; Low, T.; Yan, H.G. Infrared Fingerprints of Few-Layer Black Phosphorus. Nat. Commun. 2017, 8, 14071-1–14071-9. [Google Scholar] [CrossRef]
- Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.H.; Asadi, M.; Tuschel, D.; Ernesto Indacochea, J.; Klie, R.F.; Salehi-Khojin, A. High-Quality Black Phosphorus Atomic Layers by Liquid-phase Exfoliation. Adv. Mater. 2015, 27, 1887–1892. [Google Scholar] [CrossRef]
- Bao, T.; Tegus, O.; Hasichaolu, H.; Jun, N.; Narengerile, N. Preparation of Black Phosphorus by the Mechanical Ball Milling Method and its Characterization. Solid State Phenom. 2018, 271, 18–22. [Google Scholar] [CrossRef]
- Wood, J.D.; Wells, S.A.; Jariwala, D.; Chen, K.S.; Cho, E.; Sangwan, V.K.; Liu, X.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Effective Passivation of Exfoliated Black Phosphorus Transistors Against Ambient Degradation. Nano Lett. 2014, 14, 6964. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, Q.; Tong, Y.; Wang, J. Light-induced Ambient Degradation of Few-Layer Black Phosphorus: Mechanism and Protection. Angew. Chem. Int. Ed. 2016, 55, 11437–11441. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, T.; Bolag, A.; Tian, X.; Ojiyed, T. Synthesis of Black Phosphorene/P-Rich Transition Metal Phosphide NiP3 Heterostructure and Its Effect on the Stabilization of Black Phosphorene. Crystals 2023, 13, 1571. https://doi.org/10.3390/cryst13111571
Bao T, Bolag A, Tian X, Ojiyed T. Synthesis of Black Phosphorene/P-Rich Transition Metal Phosphide NiP3 Heterostructure and Its Effect on the Stabilization of Black Phosphorene. Crystals. 2023; 13(11):1571. https://doi.org/10.3390/cryst13111571
Chicago/Turabian StyleBao, Tana, Altan Bolag, Xiao Tian, and Tegus Ojiyed. 2023. "Synthesis of Black Phosphorene/P-Rich Transition Metal Phosphide NiP3 Heterostructure and Its Effect on the Stabilization of Black Phosphorene" Crystals 13, no. 11: 1571. https://doi.org/10.3390/cryst13111571
APA StyleBao, T., Bolag, A., Tian, X., & Ojiyed, T. (2023). Synthesis of Black Phosphorene/P-Rich Transition Metal Phosphide NiP3 Heterostructure and Its Effect on the Stabilization of Black Phosphorene. Crystals, 13(11), 1571. https://doi.org/10.3390/cryst13111571