Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marpaung, D.; Yao, J.; Capmany, J. Integrated microwave photonics. Nat. Photonics 2019, 13, 80–90. [Google Scholar] [CrossRef]
- Olorunsola, O.; Said, A.; Ojo, S.; Abernathy, G.; Saha, S.; Wangila, E.; Grant, J.; Stanchu, H.; Acharya, S.; Du, W.; et al. Enhanced carrier collection efficiency of GeSn single quantum well towards all-group-IV photonics applications. J. Phys. D Appl. Phys 2022, 55, 305101. [Google Scholar] [CrossRef]
- Olorunsola, O.; Said, A.; Ojo, S.; Stanchu, H.; Abernathy, G.; Amoah, S.; Saha, S.; Wangila, E.; Grant, J.; Acharya, S.; et al. SiGeSn quantum well for photonics integrated circuits on Si photonics platform: A review. J. Phys. D Appl. Phys. 2022, 55, 443001. [Google Scholar] [CrossRef]
- Olorunsola, O.; Stanchu, H.; Ojo, S.; Wangila, E.; Said, A.; Zamani-Alavijeh, M.; Salamo, G.; Yu, S. Optical and structural properties of GeSn/SiGeSn multiple quantum wells for infrared optoelectronics. J. Cryst. Growth 2022, 588, 126675. [Google Scholar] [CrossRef]
- Mingchu, T.; Siming, C.; Jiang, W.; Qi, J.; Vitaliy, G.D.; Mourad, B.; Yuriy, I.M.; Gregory, J.S.; Alwyn, S.; Huiyun, L. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express 2011, 19, 11381–11386. [Google Scholar] [CrossRef]
- Du, W.; Ghetmiri, S.A.; Margetis, J.; Al-Kabi, S.; Zhou, Y.; Liu, J.; Sun, G.; Soref, R.A.; Tolle, J.; Li, B.; et al. Investigation of optical transitions in a SiGeSn/GeSn/SiGeSn single quantum well structure. J. Appl. Phys. 2017, 122, 123102. [Google Scholar] [CrossRef]
- Takuro, F.; Tomonari, S.; Koji, T.; Koichi, H.; Takaaki, K.; Shinji, M. Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon. IET Optoelectron. 2015, 9, 151–157. [Google Scholar] [CrossRef]
- Kim, Y.M.; Dahlstrom, M.; Lee, S.; Rodwell, A.J.W.; Gossard, A.C. High-performance InP/In/sub 0.53/Ga/sub 0.47/As/InP double HBTs on GaAs substrates. IEEE 2002, 23, 297–299. [Google Scholar] [CrossRef]
- Billah, M.R.; Blaicher, M.; Hoose, T.; Dietrich, P.I.; Marin-Palomo, P.; Lindenmann, N.; Nesic, A.; Hofmann, A.; Troppenz, U.; Moehrle, M.; et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 2018, 5, 876–883. [Google Scholar] [CrossRef]
- Wangila, E.; Saha, S.K.; Kumar, R.; Kuchuk, A.; Gunder, C.; Amoah, S.; Khiangte, K.R.; Chen, Z.; Yu, S.Q.; Salamo, G.J. Single crystalline Ge thin film growth on c-plane sapphire substrates by molecular beam epitaxy (MBE). CrystEngComm 2022, 24, 4372–4380. [Google Scholar] [CrossRef]
- Al-Kab, S.; Ghetmiri, S.A.; Margetis, J.; Pham, T.; Zhou, Y.; Dou, W.; Collier, B.; Quinde, R.; Du, W.; Mosleh, A.; et al. An optically pumped 2.5 μm GeSn laser on Si operating at 110 K. Appl. Phys. Lett. 2016, 109, 171105. [Google Scholar] [CrossRef]
- Margetis, J.; Al-Kabi, S.; Du, W.; Dou, W.; Zhou, Y.; Pham, T.; Grant, P.; Ghetmiri, S.; Mosleh, A.; Li, B.; et al. Si-Based GeSn Lasers with Wavelength Coverage of 2–3 μm and Operating Temperatures up to 180 K. ACS 2017, 5, 827–833. [Google Scholar] [CrossRef]
- Schwank, J.R.; Ferlet-Cavrois, V.; Shaneyfelt, M.R.; Paillet, P.; Dodd, P.E. Radiation Effects in SOI Technologie. IEEE 2003, 50, 522–538. [Google Scholar]
- Kashfia, H.; Paul, B. A radiation hard configuration memory with auto-scrubbing. In Proceedings of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, 7–10 November 2011; IEEE: New York, NY, USA. [Google Scholar] [CrossRef]
- Ashim, D.; Ali, R.; Frédéric, P.; Ananth, Z.S.; Stéphane, C.; Nicolas, L.T.; Roel, B. Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides. Opt. Express 2015, 23, 27391–27404. [Google Scholar]
- O’Mahony, D.; Hossain, M.N.; John, J.; Emanuele, P.; O’Riordan, A.; Brendan, R.; Brian, C. High index contrast optical platform using gallium phosphide on sapphire: An alternative to SOI? SPIE 2012, 8431, 84311H-8. [Google Scholar]
- Tom, B.; Alexander, S.; Rob, I.; Andrew, S.; Boyan Penkov William, A.; Michael, H. Silicon-on-sapphire integrated waveguides for the mid-infrared. Opt. Express 2010, 18, 12127–12135. [Google Scholar] [CrossRef]
- Humphreys, T.P.; Miner, C.J.; Posthill, J.B.; Das, K.; Summerville, M.K.; Nemanich, R.J.; Sukow, C.A.; Parikh, N.R. Heteroepitaxial growth and characterization of GaAs on silicon-on-sapphire and sapphire substrates. Appl. Phys. Lett. 1989, 54, 1687–1689. [Google Scholar] [CrossRef]
- Xia, C.; Milosevic, S.M.M.; Scott, R.; Thalía, D.B.; Ke, L.; David, J.T.; Frederic, G.; Graham, T.R. The emergence of Silicon Photonics as a Flexible Technology Platform. IEEE 2018, 106, 2101–2116. [Google Scholar]
- Saha, S.K.; Kumar, R.; Kuchuk, A.; Alavijeh, M.Z.; Maidaniuk, Y.; Mazur, Y.I.; Yu, S.; Salamo, G.J. Crystalline GaAs Thin Film Growth on a c-Plane Sapphire Substrate. Cryst. Growth Des. 2019, 19, 5088–5096. [Google Scholar] [CrossRef]
- Littlejohn, A.J.; Xiang, Y.; Rauch, E.; Lu, T.-M.; Wang, G.-C. van der Waals epitaxy of Ge films on mica. J. Appl. Phys. 2017, 122, 185305. [Google Scholar] [CrossRef]
- Khiangte, K.R.; Rathore, J.S.; Schmidt, J.; Osten, H.J.; Laha, A.; Mahapatra, S. Wafer-scale all-epitaxial GeSn-on-insulator on Si(1 1 1) by molecular beam epitaxy. J. Appl. Phys. 2018, 51, 32LT01. [Google Scholar] [CrossRef]
- Ichimiya, A.; Cohen, P.I. Reflection HighEnergy ElectronDiffraction; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; Volume 22, pp. 2769–2770. [Google Scholar] [CrossRef]
- Kim, H.J.; Duzik, A.; Hyung, B.; Choi, S.H.; Zhao, Y. High-Electron-Mobility SiGe on Sapphire Substrate for Fast Chipsets. ProQuest Cent. 2008, 2015, 785415. [Google Scholar] [CrossRef]
- Moram, M.A.; Vickers, M.E. X-ray diffraction of III-nitrides. Rep. Prog. Phys. 2009, 72, 036502. [Google Scholar] [CrossRef]
- Kim, H.J.; Duzik, A.; Choi, S.H. Lattice-alignment mechanism of SiGe on Sapphire. Acta Mater. 2018, 145, 1–7. [Google Scholar] [CrossRef]
- Poulat, S.; Ernst, F. Epitaxy of Ge on sapphire. Mater. Sci. Eng. A 2001, 323, 9–16. [Google Scholar] [CrossRef]
- Godbey, D.J.; Twigg, M.E. The nucleation and growth of germanium on (1102) sapphire deposited by molecular beam epitaxy. J. Appl. Phys. 1991, 69, 4216–4221. [Google Scholar] [CrossRef]
- Joshua, G.; Abernathy, G.; Olorunsola, O.; Ojo, S.; Amoah, S.; Wanglia, E.; Saha, S.; Sabbar, A.; Du, W.; Alher, M.; et al. Growth of Pseudomorphic GeSn at Low Pressure with Sn Composition of 16.7%. Materials 2021, 14, 7637. [Google Scholar] [CrossRef]
- Kartopua, G.; Bayliss, S.C. Simultaneous micro-Raman and photoluminescence study of spark-processed germanium: Report on the origin of the orange photoluminescence emission band. Appl. Phys. Lett. 2004, 95, 3466–3472. [Google Scholar] [CrossRef]
- Krivyakin, G.K.; Volodin, V.A.; Kamaev, G.N.; Popov, A.A. Effect of Interfaces and Thickness on the Crystallization Kinetics of Amorphous Germanium Films. Semiconductors 2020, 54, 754–758. [Google Scholar] [CrossRef]
- Ghosh, A.; Clavel, M.B.; Nguyen, P.D.; Meeker, M.A.; Khodaparast, G.A.; Bodnar, R.J.; Hudait, M.K. Growth, structural, and electrical properties of germanium-on-silicon heterostructure by molecular beam epitaxy. AIP Adv. 2017, 7, 095214. [Google Scholar] [CrossRef]
- Maity, G.; Yadav, R.P.; Singhal, R.; Sulania, I.; Mitta, A.K.; Chaudhary, D.K. Thickness effect on scaling law and surface properties of nano-dimensional SnTe thin films. J. Appl. Phys. 2021, 130, 175306. [Google Scholar] [CrossRef]
- Tramposch, R.F. Epitaxial Films of Germanium Deposited on Sapphire via Chemical Vapor Transport. J. Electrochem. Soc. 1969, 116, 654. [Google Scholar] [CrossRef]
Sample/ Properties | S1 | S2 | S3 | S4 | S5 | S6 | S7 |
---|---|---|---|---|---|---|---|
Strain | 0.0007 | 0.0019 | 0.0017 | 0.0003 | 0.0004 | 0.0003 | 0.0001 |
Twinning (%) | 42.1 | 22.0 | 48.5 | 3.47 | 20.1 | 24.9 | 16.3 |
Roughness (nm) | 5.5 | 2.2 | 2.1 | 4.0 | 6.5 | 12.0 | 9.8 |
Omega linewidth (deg) | 0.35 | 0.45 | 0.54 | 0.55 | 0.56 | 0.35 | 0.29 |
Domain size (nm) | 290 | 440 | 340 | 470 | 500 | 780 | 990 |
Correlation length (nm) | 250 | 50 | 49 | 150 | 330 | 620 | 580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangila, E.; Lytvyn, P.; Stanchu, H.; Gunder, C.; de Oliveira, F.M.; Saha, S.; Das, S.; Eldose, N.; Li, C.; Zamani-Alavijeh, M.; et al. Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy. Crystals 2023, 13, 1557. https://doi.org/10.3390/cryst13111557
Wangila E, Lytvyn P, Stanchu H, Gunder C, de Oliveira FM, Saha S, Das S, Eldose N, Li C, Zamani-Alavijeh M, et al. Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy. Crystals. 2023; 13(11):1557. https://doi.org/10.3390/cryst13111557
Chicago/Turabian StyleWangila, Emmanuel, Peter Lytvyn, Hryhorii Stanchu, Calbi Gunder, Fernando Maia de Oliveira, Samir Saha, Subhashis Das, Nirosh Eldose, Chen Li, Mohammad Zamani-Alavijeh, and et al. 2023. "Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy" Crystals 13, no. 11: 1557. https://doi.org/10.3390/cryst13111557
APA StyleWangila, E., Lytvyn, P., Stanchu, H., Gunder, C., de Oliveira, F. M., Saha, S., Das, S., Eldose, N., Li, C., Zamani-Alavijeh, M., Benamara, M., Mazur, Y. I., Yu, S.-Q., & Salamo, G. J. (2023). Growth of Germanium Thin Films on Sapphire Using Molecular Beam Epitaxy. Crystals, 13(11), 1557. https://doi.org/10.3390/cryst13111557